24 research outputs found

    Unsupervised Domain Adaptive Fundus Image Segmentation with Few Labeled Source Data

    Full text link
    Deep learning-based segmentation methods have been widely employed for automatic glaucoma diagnosis and prognosis. In practice, fundus images obtained by different fundus cameras vary significantly in terms of illumination and intensity. Although recent unsupervised domain adaptation (UDA) methods enhance the models' generalization ability on the unlabeled target fundus datasets, they always require sufficient labeled data from the source domain, bringing auxiliary data acquisition and annotation costs. To further facilitate the data efficiency of the cross-domain segmentation methods on the fundus images, we explore UDA optic disc and cup segmentation problems using few labeled source data in this work. We first design a Searching-based Multi-style Invariant Mechanism to diversify the source data style as well as increase the data amount. Next, a prototype consistency mechanism on the foreground objects is proposed to facilitate the feature alignment for each kind of tissue under different image styles. Moreover, a cross-style self-supervised learning stage is further designed to improve the segmentation performance on the target images. Our method has outperformed several state-of-the-art UDA segmentation methods under the UDA fundus segmentation with few labeled source data.Comment: Accepted by The 33rd British Machine Vision Conference (BMVC) 202

    A Comprehensive Overview of Computational Nuclei Segmentation Methods in Digital Pathology

    Full text link
    In the cancer diagnosis pipeline, digital pathology plays an instrumental role in the identification, staging, and grading of malignant areas on biopsy tissue specimens. High resolution histology images are subject to high variance in appearance, sourcing either from the acquisition devices or the H\&E staining process. Nuclei segmentation is an important task, as it detects the nuclei cells over background tissue and gives rise to the topology, size, and count of nuclei which are determinant factors for cancer detection. Yet, it is a fairly time consuming task for pathologists, with reportedly high subjectivity. Computer Aided Diagnosis (CAD) tools empowered by modern Artificial Intelligence (AI) models enable the automation of nuclei segmentation. This can reduce the subjectivity in analysis and reading time. This paper provides an extensive review, beginning from earlier works use traditional image processing techniques and reaching up to modern approaches following the Deep Learning (DL) paradigm. Our review also focuses on the weak supervision aspect of the problem, motivated by the fact that annotated data is scarce. At the end, the advantages of different models and types of supervision are thoroughly discussed. Furthermore, we try to extrapolate and envision how future research lines will potentially be, so as to minimize the need for labeled data while maintaining high performance. Future methods should emphasize efficient and explainable models with a transparent underlying process so that physicians can trust their output.Comment: 47 pages, 27 figures, 9 table

    Deep learning for unsupervised domain adaptation in medical imaging: Recent advancements and future perspectives

    Full text link
    Deep learning has demonstrated remarkable performance across various tasks in medical imaging. However, these approaches primarily focus on supervised learning, assuming that the training and testing data are drawn from the same distribution. Unfortunately, this assumption may not always hold true in practice. To address these issues, unsupervised domain adaptation (UDA) techniques have been developed to transfer knowledge from a labeled domain to a related but unlabeled domain. In recent years, significant advancements have been made in UDA, resulting in a wide range of methodologies, including feature alignment, image translation, self-supervision, and disentangled representation methods, among others. In this paper, we provide a comprehensive literature review of recent deep UDA approaches in medical imaging from a technical perspective. Specifically, we categorize current UDA research in medical imaging into six groups and further divide them into finer subcategories based on the different tasks they perform. We also discuss the respective datasets used in the studies to assess the divergence between the different domains. Finally, we discuss emerging areas and provide insights and discussions on future research directions to conclude this survey.Comment: Under Revie

    Explainable, Domain-Adaptive, and Federated Artificial Intelligence in Medicine

    Full text link
    Artificial intelligence (AI) continues to transform data analysis in many domains. Progress in each domain is driven by a growing body of annotated data, increased computational resources, and technological innovations. In medicine, the sensitivity of the data, the complexity of the tasks, the potentially high stakes, and a requirement of accountability give rise to a particular set of challenges. In this review, we focus on three key methodological approaches that address some of the particular challenges in AI-driven medical decision making. (1) Explainable AI aims to produce a human-interpretable justification for each output. Such models increase confidence if the results appear plausible and match the clinicians expectations. However, the absence of a plausible explanation does not imply an inaccurate model. Especially in highly non-linear, complex models that are tuned to maximize accuracy, such interpretable representations only reflect a small portion of the justification. (2) Domain adaptation and transfer learning enable AI models to be trained and applied across multiple domains. For example, a classification task based on images acquired on different acquisition hardware. (3) Federated learning enables learning large-scale models without exposing sensitive personal health information. Unlike centralized AI learning, where the centralized learning machine has access to the entire training data, the federated learning process iteratively updates models across multiple sites by exchanging only parameter updates, not personal health data. This narrative review covers the basic concepts, highlights relevant corner-stone and state-of-the-art research in the field, and discusses perspectives.Comment: This paper is accepted in IEEE CAA Journal of Automatica Sinica, Nov. 10 202

    Fully Unsupervised Image Denoising, Diversity Denoising and Image Segmentation with Limited Annotations

    Get PDF
    Understanding the processes of cellular development and the interplay of cell shape changes, division and migration requires investigation of developmental processes at the spatial resolution of single cell. Biomedical imaging experiments enable the study of dynamic processes as they occur in living organisms. While biomedical imaging is essential, a key component of exposing unknown biological phenomena is quantitative image analysis. Biomedical images, especially microscopy images, are usually noisy owing to practical limitations such as available photon budget, sample sensitivity, etc. Additionally, microscopy images often contain artefacts due to the optical aberrations in microscopes or due to imperfections in camera sensor and internal electronics. The noisy nature of images as well as the artefacts prohibit accurate downstream analysis such as cell segmentation. Although countless approaches have been proposed for image denoising, artefact removal and segmentation, supervised Deep Learning (DL) based content-aware algorithms are currently the best performing for all these tasks. Supervised DL based methods are plagued by many practical limitations. Supervised denoising and artefact removal algorithms require paired corrupted and high quality images for training. Obtaining such image pairs can be very hard and virtually impossible in most biomedical imaging applications owing to photosensitivity and the dynamic nature of the samples being imaged. Similarly, supervised DL based segmentation methods need copious amounts of annotated data for training, which is often very expensive to obtain. Owing to these restrictions, it is imperative to look beyond supervised methods. The objective of this thesis is to develop novel unsupervised alternatives for image denoising, and artefact removal as well as semisupervised approaches for image segmentation. The first part of this thesis deals with unsupervised image denoising and artefact removal. For unsupervised image denoising task, this thesis first introduces a probabilistic approach for training DL based methods using parametric models of imaging noise. Next, a novel unsupervised diversity denoising framework is presented which addresses the fundamentally non-unique inverse nature of image denoising by generating multiple plausible denoised solutions for any given noisy image. Finally, interesting properties of the diversity denoising methods are presented which make them suitable for unsupervised spatial artefact removal in microscopy and medical imaging applications. In the second part of this thesis, the problem of cell/nucleus segmentation is addressed. The focus is especially on practical scenarios where ground truth annotations for training DL based segmentation methods are scarcely available. Unsupervised denoising is used as an aid to improve segmentation performance in the presence of limited annotations. Several training strategies are presented in this work to leverage the representations learned by unsupervised denoising networks to enable better cell/nucleus segmentation in microscopy data. Apart from DL based segmentation methods, a proof-of-concept is introduced which views cell/nucleus segmentation from the perspective of solving a label fusion problem. This method, through limited human interaction, learns to choose the best possible segmentation for each cell/nucleus using only a pool of diverse (and possibly faulty) segmentation hypotheses as input. In summary, this thesis seeks to introduce new unsupervised denoising and artefact removal methods as well as semi-supervised segmentation methods which can be easily deployed to directly and immediately benefit biomedical practitioners with their research

    Working with scarce annotations in computational pathology

    Get PDF
    Computational pathology is the study of algorithms and approaches that facilitate the process of diagnosis and prognosis of primarily from digital pathology. The automated methods presented in computational pathology decrease the inter and intra-observability in diagnosis and make the workflow of pathologists more efficient. Digital slide scanners have enabled the digitization of tissue slides and generating whole slide images (WSIs), allowing them to be viewed on a computer screen rather than through a microscope. Digital pathology images present an opportunity for development of new algorithms to automatically analyse the tissue characteristics. In this thesis, we first focus on the development of automated approaches for detection and segmentation of nuclei. In this regard, for nuclear detection, each nucleus is considered as a Gaussian shape where the mean of Gaussian determines the centroids of nuclei. We investigate the application of mixture density networks for detection of nuclei in the histology images. We also propose a convolutional neural network (CNN) for instance seg mentation of nuclei. The CNN uses the nuclei spatial information as the target to separate the clustered nuclei. Pixels of each nucleus are replaced with the spatial information of that nucleus. The CNN also utilises dense blocks to reduce number of parameters and positional information at different layer of the network to better learn the spatial information embedded in ground truth. Two chapters of this thesis are dedicated to dealing with lack of annotations in computational pathology. To this end, we propose a method named as NuClick to generate high quality segmentations for glands and nuclei. NuClick is an interactive CNN based method, that requires minimum user interaction for collecting annotations. We show that one click inside a nucleus can be enough to delineate its boundaries. Moreover, for glands that are more complex and larger objects a squiggle can extract their precise outline. In another chapter, we propose Self-Path, a method for semi-supervised learning and domain alignment. The main contribution of this chapter is proposing self-supervised tasks that are specific to histology domain and can be extremely helpful when there are not enough annotations for training deep models. One of these self-supervised tasks is predicting the magnification puzzle which is the first domain specific self-supervised task shown to be helpful for domain alignment and semi-supervised learning for classification of histology images. Nuclear localization allows further exploration of digital biomarkers and can serve as a fundamental route to predicting patient outcome. In chapter 6, by focusing on the challenge of weak labels for whole slide images (WSIs) and also utilising the nuclear localisation techniques, we explore the morphological features from patches that are selected by the model and we observe that these features are associated with patient survival
    corecore