808 research outputs found

    Unsupervised Incremental Online Learning and Prediction of Musical Audio Signals

    Get PDF
    Guided by the idea that musical human-computer interaction may become more effective, intuitive, and creative when basing its computer part on cognitively more plausible learning principles, we employ unsupervised incremental online learning (i.e. clustering) to build a system that predicts the next event in a musical sequence, given as audio input. The flow of the system is as follows: 1) segmentation by onset detection, 2) timbre representation of each segment by Mel frequency cepstrum coefficients, 3) discretization by incremental clustering, yielding a tree of different sound classes (e.g. timbre categories/instruments) that can grow or shrink on the fly driven by the instantaneous sound events, resulting in a discrete symbol sequence, 4) extraction of statistical regularities of the symbol sequence, using hierarchical N-grams and the newly introduced conceptual Boltzmann machine that adapt to the dynamically changing clustering tree in 3) , and 5) prediction of the next sound event in the sequence, given the last n previous events. The system's robustness is assessed with respect to complexity and noisiness of the signal. Clustering in isolation yields an adjusted Rand index (ARI) of 82.7%/85.7% for data sets of singing voice and drums. Onset detection jointly with clustering achieve an ARI of 81.3%/76.3% and the prediction of the entire system yields an ARI of 27.2%/39.2%

    Deep Learning Techniques for Music Generation -- A Survey

    Full text link
    This paper is a survey and an analysis of different ways of using deep learning (deep artificial neural networks) to generate musical content. We propose a methodology based on five dimensions for our analysis: Objective - What musical content is to be generated? Examples are: melody, polyphony, accompaniment or counterpoint. - For what destination and for what use? To be performed by a human(s) (in the case of a musical score), or by a machine (in the case of an audio file). Representation - What are the concepts to be manipulated? Examples are: waveform, spectrogram, note, chord, meter and beat. - What format is to be used? Examples are: MIDI, piano roll or text. - How will the representation be encoded? Examples are: scalar, one-hot or many-hot. Architecture - What type(s) of deep neural network is (are) to be used? Examples are: feedforward network, recurrent network, autoencoder or generative adversarial networks. Challenge - What are the limitations and open challenges? Examples are: variability, interactivity and creativity. Strategy - How do we model and control the process of generation? Examples are: single-step feedforward, iterative feedforward, sampling or input manipulation. For each dimension, we conduct a comparative analysis of various models and techniques and we propose some tentative multidimensional typology. This typology is bottom-up, based on the analysis of many existing deep-learning based systems for music generation selected from the relevant literature. These systems are described and are used to exemplify the various choices of objective, representation, architecture, challenge and strategy. The last section includes some discussion and some prospects.Comment: 209 pages. This paper is a simplified version of the book: J.-P. Briot, G. Hadjeres and F.-D. Pachet, Deep Learning Techniques for Music Generation, Computational Synthesis and Creative Systems, Springer, 201

    Incremental sharing using machine learning

    Get PDF
    Generally, the present disclosure is directed to incrementally sharing resources, e.g., documents, media, etc., using machine-learned models. In particular, in some implementations, when the user provides permission to access user data, the systems and methods of the present disclosure can include or otherwise leverage one or more machine-learned models to suggest files on a device or in the cloud that a user can share based on documents or other media that the user has already shown intent to share. Machine learning is used to determine resources, e.g., documents, media, links, etc., that have features with correlation with the resource the user has expressed an intent to share. Such documents, media, links, etc. are suggested to the user as additionally shareable resources. When the user provides consent to utilize data indicative of usage context, such context, e.g., the breadth of share (public, private, specific individual, etc.), device state, context of sharing, etc. may be used as inputs to the machine learning model to determine sharing suggestions
    corecore