230 research outputs found

    Clustering: finding patterns in the darkness

    Get PDF
    Machine learning is changing the world and fuelling Industry 4.0. These statistical methods focused on identifying patterns in data to provide an intelligent response to specific requests. Although understanding data tends to require expert knowledge to supervise the decision-making process, some techniques need no supervision. These unsupervised techniques can work blindly but they are based on data similarity. One of the most popular areas in this field is clustering. Clustering groups data to guarantee that the clusters’ elements have a strong similarity while the clusters are distinct among them. This field started with the K-means algorithm, one of the most popular algorithms in machine learning with extensive applications. Currently, there are multiple strategies to deal with the clustering problem. This review introduces some of the classical algorithms, focusing significantly on algorithms based on evolutionary computation, and explains some current applications of clustering to large datasets

    Efficient Learning Machines

    Get PDF
    Computer scienc

    Seeking multiple solutions:an updated survey on niching methods and their applications

    Get PDF
    Multi-Modal Optimization (MMO) aiming to locate multiple optimal (or near-optimal) solutions in a single simulation run has practical relevance to problem solving across many fields. Population-based meta-heuristics have been shown particularly effective in solving MMO problems, if equipped with specificallydesigned diversity-preserving mechanisms, commonly known as niching methods. This paper provides an updated survey on niching methods. The paper first revisits the fundamental concepts about niching and its most representative schemes, then reviews the most recent development of niching methods, including novel and hybrid methods, performance measures, and benchmarks for their assessment. Furthermore, the paper surveys previous attempts at leveraging the capabilities of niching to facilitate various optimization tasks (e.g., multi-objective and dynamic optimization) and machine learning tasks (e.g., clustering, feature selection, and learning ensembles). A list of successful applications of niching methods to real-world problems is presented to demonstrate the capabilities of niching methods in providing solutions that are difficult for other optimization methods to offer. The significant practical value of niching methods is clearly exemplified through these applications. Finally, the paper poses challenges and research questions on niching that are yet to be appropriately addressed. Providing answers to these questions is crucial before we can bring more fruitful benefits of niching to real-world problem solving

    A Survey on Evolutionary Computation for Computer Vision and Image Analysis: Past, Present, and Future Trends

    Get PDF
    Computer vision (CV) is a big and important field in artificial intelligence covering a wide range of applications. Image analysis is a major task in CV aiming to extract, analyse and understand the visual content of images. However, imagerelated tasks are very challenging due to many factors, e.g., high variations across images, high dimensionality, domain expertise requirement, and image distortions. Evolutionary computation (EC) approaches have been widely used for image analysis with significant achievement. However, there is no comprehensive survey of existing EC approaches to image analysis. To fill this gap, this paper provides a comprehensive survey covering all essential EC approaches to important image analysis tasks including edge detection, image segmentation, image feature analysis, image classification, object detection, and others. This survey aims to provide a better understanding of evolutionary computer vision (ECV) by discussing the contributions of different approaches and exploring how and why EC is used for CV and image analysis. The applications, challenges, issues, and trends associated to this research field are also discussed and summarised to provide further guidelines and opportunities for future research

    Identifying and Detecting Attacks in Industrial Control Systems

    Get PDF
    The integrity of industrial control systems (ICS) found in utilities, oil and natural gas pipelines, manufacturing plants and transportation is critical to national wellbeing and security. Such systems depend on hundreds of field devices to manage and monitor a physical process. Previously, these devices were specific to ICS but they are now being replaced by general purpose computing technologies and, increasingly, these are being augmented with Internet of Things (IoT) nodes. Whilst there are benefits to this approach in terms of cost and flexibility, it has attracted a wider community of adversaries. These include those with significant domain knowledge, such as those responsible for attacks on Iran’s Nuclear Facilities, a Steel Mill in Germany, and Ukraine’s power grid; however, non specialist attackers are becoming increasingly interested in the physical damage it is possible to cause. At the same time, the approach increases the number and range of vulnerabilities to which ICS are subject; regrettably, conventional techniques for analysing such a large attack space are inadequate, a cause of major national concern. In this thesis we introduce a generalisable approach based on evolutionary multiobjective algorithms to assist in identifying vulnerabilities in complex heterogeneous ICS systems. This is both challenging and an area that is currently lacking research. Our approach has been to review the security of currently deployed ICS systems, and then to make use of an internationally recognised ICS simulation testbed for experiments, assuming that the attacking community largely lack specific ICS knowledge. Using the simulator, we identified vulnerabilities in individual components and then made use of these to generate attacks. A defence against these attacks in the form of novel intrusion detection systems were developed, based on a range of machine learning models. Finally, this was further subject to attacks created using the evolutionary multiobjective algorithms, demonstrating, for the first time, the feasibility of creating sophisticated attacks against a well-protected adversary using automated mechanisms

    Particle Swarm Optimization

    Get PDF
    Particle swarm optimization (PSO) is a population based stochastic optimization technique influenced by the social behavior of bird flocking or fish schooling.PSO shares many similarities with evolutionary computation techniques such as Genetic Algorithms (GA). The system is initialized with a population of random solutions and searches for optima by updating generations. However, unlike GA, PSO has no evolution operators such as crossover and mutation. In PSO, the potential solutions, called particles, fly through the problem space by following the current optimum particles. This book represents the contributions of the top researchers in this field and will serve as a valuable tool for professionals in this interdisciplinary field

    Fuzzy systems and unsupervised computing: exploration of applications in biology

    Get PDF
    In this thesis we will explore the use of fuzzy systems theory for applications in bioinformatics. The theory of fuzzy systems is concerned with formulating decision problems in data sets that are ill-defined. It supports the transfer from a subjective human classification to a numerical scale. In this manner it affords the testing of hypothesis and separation of the classes in the data. We first formulate problems in terms of a fuzzy system and then develop and test algorithms in terms of their performance with data from the domain of the life-sciences. From the results and the performance, we will learn about the usefulness of fuzzy systems for the field, as well as the applicability to the kind of problems and practicality for the computation itself. Computer Systems, Imagery and Medi
    • …
    corecore