1,169 research outputs found

    Viterbi Training for PCFGs: Hardness Results and Competitiveness of Uniform Initialization

    Get PDF
    We consider the search for a maximum likelihood assignment of hidden derivations and grammar weights for a probabilistic context-free grammar, the problem approximately solved by “Viterbi training.” We show that solving and even approximating Viterbi training for PCFGs is NP-hard. We motivate the use of uniformat-random initialization for Viterbi EM as an optimal initializer in absence of further information about the correct model parameters, providing an approximate bound on the log-likelihood.

    Discovery of Linguistic Relations Using Lexical Attraction

    Full text link
    This work has been motivated by two long term goals: to understand how humans learn language and to build programs that can understand language. Using a representation that makes the relevant features explicit is a prerequisite for successful learning and understanding. Therefore, I chose to represent relations between individual words explicitly in my model. Lexical attraction is defined as the likelihood of such relations. I introduce a new class of probabilistic language models named lexical attraction models which can represent long distance relations between words and I formalize this new class of models using information theory. Within the framework of lexical attraction, I developed an unsupervised language acquisition program that learns to identify linguistic relations in a given sentence. The only explicitly represented linguistic knowledge in the program is lexical attraction. There is no initial grammar or lexicon built in and the only input is raw text. Learning and processing are interdigitated. The processor uses the regularities detected by the learner to impose structure on the input. This structure enables the learner to detect higher level regularities. Using this bootstrapping procedure, the program was trained on 100 million words of Associated Press material and was able to achieve 60% precision and 50% recall in finding relations between content-words. Using knowledge of lexical attraction, the program can identify the correct relations in syntactically ambiguous sentences such as ``I saw the Statue of Liberty flying over New York.''Comment: dissertation, 56 page

    Producing power-law distributions and damping word frequencies with two-stage language models

    Get PDF
    Standard statistical models of language fail to capture one of the most striking properties of natural languages: the power-law distribution in the frequencies of word tokens. We present a framework for developing statisticalmodels that can generically produce power laws, breaking generativemodels into two stages. The first stage, the generator, can be any standard probabilistic model, while the second stage, the adaptor, transforms the word frequencies of this model to provide a closer match to natural language. We show that two commonly used Bayesian models, the Dirichlet-multinomial model and the Dirichlet process, can be viewed as special cases of our framework. We discuss two stochastic processes-the Chinese restaurant process and its two-parameter generalization based on the Pitman-Yor process-that can be used as adaptors in our framework to produce power-law distributions over word frequencies. We show that these adaptors justify common estimation procedures based on logarithmic or inverse-power transformations of empirical frequencies. In addition, taking the Pitman-Yor Chinese restaurant process as an adaptor justifies the appearance of type frequencies in formal analyses of natural language and improves the performance of a model for unsupervised learning of morphology.48 page(s

    Syntactic inductive biases for deep learning methods

    Full text link
    Le débat entre connexionnisme et symbolisme est l'une des forces majeures qui animent le développement de l'Intelligence Artificielle. L'apprentissage profond et la linguistique théorique sont les domaines d'études les plus représentatifs pour les deux écoles respectivement. Alors que la méthode d'apprentissage profond a fait des percées impressionnantes et est devenue la principale raison de la récente prospérité de l'IA pour l'industrie et les universités, la linguistique et le symbolisme occupent quelque domaines importantes, notamment l'interprétabilité et la fiabilité. Dans cette thèse, nous essayons de construire une connexion entre les deux écoles en introduisant des biais inductifs linguistiques pour les modèles d'apprentissage profond. Nous proposons deux familles de biais inductifs, une pour la structure de circonscription et une autre pour la structure de dépendance. Le biais inductif de circonscription encourage les modèles d'apprentissage profond à utiliser différentes unités (ou neurones) pour traiter séparément les informations à long terme et à court terme. Cette séparation fournit un moyen pour les modèles d'apprentissage profond de construire les représentations hiérarchiques latentes à partir d'entrées séquentielles, dont une représentation de niveau supérieur est composée et peut être décomposée en une série de représentations de niveau inférieur. Par exemple, sans connaître la structure de vérité fondamentale, notre modèle proposé apprend à traiter l'expression logique en composant des représentations de variables et d'opérateurs en représentations d'expressions selon sa structure syntaxique. D'autre part, le biais inductif de dépendance encourage les modèles à trouver les relations latentes entre les mots dans la séquence d'entrée. Pour le langage naturel, les relations latentes sont généralement modélisées sous la forme d'un graphe de dépendance orienté, où un mot a exactement un nœud parent et zéro ou plusieurs nœuds enfants. Après avoir appliqué cette contrainte à un modèle de type transformateur, nous constatons que le modèle est capable d'induire des graphes orientés proches des annotations d'experts humains, et qu'il surpasse également le modèle de transformateur standard sur différentes tâches. Nous pensons que ces résultats expérimentaux démontrent une alternative intéressante pour le développement futur de modèles d'apprentissage profond.The debate between connectionism and symbolism is one of the major forces that drive the development of Artificial Intelligence. Deep Learning and theoretical linguistics are the most representative fields of study for the two schools respectively. While the deep learning method has made impressive breakthroughs and became the major reason behind the recent AI prosperity for industry and academia, linguistics and symbolism still holding some important grounds including reasoning, interpretability and reliability. In this thesis, we try to build a connection between the two schools by introducing syntactic inductive biases for deep learning models. We propose two families of inductive biases, one for constituency structure and another one for dependency structure. The constituency inductive bias encourages deep learning models to use different units (or neurons) to separately process long-term and short-term information. This separation provides a way for deep learning models to build the latent hierarchical representations from sequential inputs, that a higher-level representation is composed of and can be decomposed into a series of lower-level representations. For example, without knowing the ground-truth structure, our proposed model learns to process logical expression through composing representations of variables and operators into representations of expressions according to its syntactic structure. On the other hand, the dependency inductive bias encourages models to find the latent relations between entities in the input sequence. For natural language, the latent relations are usually modeled as a directed dependency graph, where a word has exactly one parent node and zero or several children nodes. After applying this constraint to a transformer-like model, we find the model is capable of inducing directed graphs that are close to human expert annotations, and it also outperforms the standard transformer model on different tasks. We believe that these experimental results demonstrate an interesting alternative for the future development of deep learning models

    Posterior Regularization for Learning with Side Information and Weak Supervision

    Get PDF
    Supervised machine learning techniques have been very successful for a variety of tasks and domains including natural language processing, computer vision, and computational biology. Unfortunately, their use often requires creation of large problem-specific training corpora that can make these methods prohibitively expensive. At the same time, we often have access to external problem-specific information that we cannot alway easily incorporate. We might know how to solve the problem in another domain (e.g. for a different language); we might have access to cheap but noisy training data; or a domain expert might be available who would be able to guide a human learner much more efficiently than by simply creating an IID training corpus. A key challenge for weakly supervised learning is then how to incorporate such kinds of auxiliary information arising from indirect supervision. In this thesis, we present Posterior Regularization, a probabilistic framework for structured, weakly supervised learning. Posterior Regularization is applicable to probabilistic models with latent variables and exports a language for specifying constraints or preferences about posterior distributions of latent variables. We show that this language is powerful enough to specify realistic prior knowledge for a variety applications in natural language processing. Additionally, because Posterior Regularization separates model complexity from the complexity of structural constraints, it can be used for structured problems with relatively little computational overhead. We apply Posterior Regularization to several problems in natural language processing including word alignment for machine translation, transfer of linguistic resources across languages and grammar induction. Additionally, we find that we can apply Posterior Regularization to the problem of multi-view learning, achieving particularly good results for transfer learning. We also explore the theoretical relationship between Posterior Regularization and other proposed frameworks for encoding this kind of prior knowledge, and show a close relationship to Constraint Driven Learning as well as to Generalized Expectation Constraints
    corecore