25 research outputs found

    Local feature selection for multiple instance learning with applications.

    Get PDF
    Feature selection is a data processing approach that has been successfully and effectively used in developing machine learning algorithms for various applications. It has been proven to effectively reduce the dimensionality of the data and increase the accuracy and interpretability of machine learning algorithms. Conventional feature selection algorithms assume that there is an optimal global subset of features for the whole sample space. Thus, only one global subset of relevant features is learned. An alternative approach is based on the concept of Local Feature Selection (LFS), where each training sample can have its own subset of relevant features. Multiple Instance Learning (MIL) is a variation of traditional supervised learning, also known as single instance learning. In MIL, each object is represented by a set of instances, or a bag. While bags are labeled, the labels of their instances are unknown. The ambiguity of the instance labels makes the feature selection for MIL challenging. Although feature selection in traditional supervised learning has been researched extensively, there are only a few methods for the MIL framework. Moreover, localized feature selection for MIL has not been researched. This dissertation focuses on developing a local feature selection method for the MIL framework. Our algorithm, called Multiple Instance Local Salient Feature Selection (MI-LSFS), searches the feature space to find the relevant features within each bag. We also propose a new multiple instance classification algorithm, called MILES-LFS, that integrates information learned by MI-LSFS during the feature selection process to identify a reduced subset of representative bags and instances. We show that using a more focused subset of prototypes can improve the performance while significantly reducing the computational complexity. Other applications of the proposed MI-LSFS include a new method that uses our MI-LSFS algorithm to explore and investigate the features learned by a Convolutional Neural Network (CNN) model; a visualization method for CNN models, called Gradient-weighted Sample Activation Map (Grad-SAM), that uses the locally learned features of each sample to highlight their relevant and salient parts, and a novel explanation method, called Classifier Explanation by Local Feature Selection (CE-LFS), to explain the decisions of trained models. The proposed MI-LSFS and its applications are validated using several synthetic and real data sets. We report and compare quantitative measures such as Rand Index, Area Under Curve (AUC), and accuracy. We also provide qualitative measures by visualizing and interpreting the selected features and their effects

    Quantum and Classical Multilevel Algorithms for (Hyper)Graphs

    Get PDF
    Combinatorial optimization problems on (hyper)graphs are ubiquitous in science and industry. Because many of these problems are NP-hard, development of sophisticated heuristics is of utmost importance for practical problems. In recent years, the emergence of Noisy Intermediate-Scale Quantum (NISQ) computers has opened up the opportunity to dramaticaly speedup combinatorial optimization. However, the adoption of NISQ devices is impeded by their severe limitations, both in terms of the number of qubits, as well as in their quality. NISQ devices are widely expected to have no more than hundreds to thousands of qubits with very limited error-correction, imposing a strict limit on the size and the structure of the problems that can be tackled directly. A natural solution to this issue is hybrid quantum-classical algorithms that combine a NISQ device with a classical machine with the goal of capturing “the best of both worlds”. Being motivated by lack of high quality optimization solvers for hypergraph partitioning, in this thesis, we begin by discussing classical multilevel approaches for this problem. We present a novel relaxation-based vertex similarity measure termed algebraic distance for hypergraphs and the coarsening schemes based on it. Extending the multilevel method to include quantum optimization routines, we present Quantum Local Search (QLS) – a hybrid iterative improvement approach that is inspired by the classical local search approaches. Next, we introduce the Multilevel Quantum Local Search (ML-QLS) that incorporates the quantum-enhanced iterative improvement scheme introduced in QLS within the multilevel framework, as well as several techniques to further understand and improve the effectiveness of Quantum Approximate Optimization Algorithm used throughout our work

    Information Bottleneck

    Get PDF
    The celebrated information bottleneck (IB) principle of Tishby et al. has recently enjoyed renewed attention due to its application in the area of deep learning. This collection investigates the IB principle in this new context. The individual chapters in this collection: • provide novel insights into the functional properties of the IB; • discuss the IB principle (and its derivates) as an objective for training multi-layer machine learning structures such as neural networks and decision trees; and • offer a new perspective on neural network learning via the lens of the IB framework. Our collection thus contributes to a better understanding of the IB principle specifically for deep learning and, more generally, of information–theoretic cost functions in machine learning. This paves the way toward explainable artificial intelligence
    corecore