7,875 research outputs found

    Unsupervised Feature Learning via Non-Parametric Instance-level Discrimination

    Full text link
    Neural net classifiers trained on data with annotated class labels can also capture apparent visual similarity among categories without being directed to do so. We study whether this observation can be extended beyond the conventional domain of supervised learning: Can we learn a good feature representation that captures apparent similarity among instances, instead of classes, by merely asking the feature to be discriminative of individual instances? We formulate this intuition as a non-parametric classification problem at the instance-level, and use noise-contrastive estimation to tackle the computational challenges imposed by the large number of instance classes. Our experimental results demonstrate that, under unsupervised learning settings, our method surpasses the state-of-the-art on ImageNet classification by a large margin. Our method is also remarkable for consistently improving test performance with more training data and better network architectures. By fine-tuning the learned feature, we further obtain competitive results for semi-supervised learning and object detection tasks. Our non-parametric model is highly compact: With 128 features per image, our method requires only 600MB storage for a million images, enabling fast nearest neighbour retrieval at the run time.Comment: CVPR 2018 spotlight paper. Code: https://github.com/zhirongw/lemniscate.pytorc

    Prototypical Contrastive Learning of Unsupervised Representations

    Full text link
    This paper presents Prototypical Contrastive Learning (PCL), an unsupervised representation learning method that addresses the fundamental limitations of instance-wise contrastive learning. PCL not only learns low-level features for the task of instance discrimination, but more importantly, it implicitly encodes semantic structures of the data into the learned embedding space. Specifically, we introduce prototypes as latent variables to help find the maximum-likelihood estimation of the network parameters in an Expectation-Maximization framework. We iteratively perform E-step as finding the distribution of prototypes via clustering and M-step as optimizing the network via contrastive learning. We propose ProtoNCE loss, a generalized version of the InfoNCE loss for contrastive learning, which encourages representations to be closer to their assigned prototypes. PCL outperforms state-of-the-art instance-wise contrastive learning methods on multiple benchmarks with substantial improvement in low-resource transfer learning. Code and pretrained models are available at https://github.com/salesforce/PCL

    Learning Spatiotemporal Features via Video and Text Pair Discrimination

    Full text link
    Current video representations heavily rely on learning from manually annotated video datasets which are time-consuming and expensive to acquire. We observe videos are naturally accompanied by abundant text information such as YouTube titles and Instagram captions. In this paper, we leverage this visual-textual connection to learn spatiotemporal features in an efficient weakly-supervised manner. We present a general cross-modal pair discrimination (CPD) framework to capture this correlation between a video and its associated text. Specifically, we adopt noise-contrastive estimation to tackle the computational issue imposed by the huge amount of pair instance classes and design a practical curriculum learning strategy. We train our CPD models on both standard video dataset (Kinetics-210k) and uncurated web video dataset (Instagram-300k) to demonstrate its effectiveness. Without further fine-tuning, the learnt models obtain competitive results for action classification on Kinetics under the linear classification protocol. Moreover, our visual model provides an effective initialization to fine-tune on downstream tasks, which yields a remarkable performance gain for action recognition on UCF101 and HMDB51, compared with the existing state-of-the-art self-supervised training methods. In addition, our CPD model yields a new state of the art for zero-shot action recognition on UCF101 by directly utilizing the learnt visual-textual embeddings. The code will be made available at https://github.com/MCG-NJU/CPD-Video.Comment: Technical Repor

    Self-Supervised Similarity Learning for Digital Pathology

    Full text link
    Using features extracted from networks pretrained on ImageNet is a common practice in applications of deep learning for digital pathology. However it presents the downside of missing domain specific image information. In digital pathology, supervised training data is expensive and difficult to collect. We propose a self-supervised method for feature extraction by similarity learning on whole slide images (WSI) that is simple to implement and allows creation of robust and compact image descriptors. We train a siamese network, exploiting image spatial continuity and assuming spatially adjacent tiles in the image are more similar to each other than distant tiles. Our network outputs feature vectors of length 128, which allows dramatically lower memory storage and faster processing than networks pretrained on ImageNet. We apply the method on digital pathology WSIs from the Camelyon16 train set and assess and compare our method by measuring image retrieval of tumor tiles and descriptor pair distance ratio for distant/near tiles in the Camelyon16 test set. We show that our method yields better retrieval task results than existing ImageNet based and generic self-supervised feature extraction methods. To the best of our knowledge, this is also the first published method for self-supervised learning tailored for digital pathology

    Unsupervised Semantic-based Aggregation of Deep Convolutional Features

    Full text link
    In this paper, we propose a simple but effective semantic-based aggregation (SBA) method. The proposed SBA utilizes the discriminative filters of deep convolutional layers as semantic detectors. Moreover, we propose the effective unsupervised strategy to select some semantic detectors to generate the "probabilistic proposals", which highlight certain discriminative pattern of objects and suppress the noise of background. The final global SBA representation could then be acquired by aggregating the regional representations weighted by the selected "probabilistic proposals" corresponding to various semantic content. Our unsupervised SBA is easy to generalize and achieves excellent performance on various tasks. We conduct comprehensive experiments and show that our unsupervised SBA outperforms the state-of-the-art unsupervised and supervised aggregation methods on image retrieval, place recognition and cloud classification.Comment: 10 pages. arXiv admin note: text overlap with arXiv:1705.0124

    Supervised Dictionary Learning and Sparse Representation-A Review

    Full text link
    Dictionary learning and sparse representation (DLSR) is a recent and successful mathematical model for data representation that achieves state-of-the-art performance in various fields such as pattern recognition, machine learning, computer vision, and medical imaging. The original formulation for DLSR is based on the minimization of the reconstruction error between the original signal and its sparse representation in the space of the learned dictionary. Although this formulation is optimal for solving problems such as denoising, inpainting, and coding, it may not lead to optimal solution in classification tasks, where the ultimate goal is to make the learned dictionary and corresponding sparse representation as discriminative as possible. This motivated the emergence of a new category of techniques, which is appropriately called supervised dictionary learning and sparse representation (S-DLSR), leading to more optimal dictionary and sparse representation in classification tasks. Despite many research efforts for S-DLSR, the literature lacks a comprehensive view of these techniques, their connections, advantages and shortcomings. In this paper, we address this gap and provide a review of the recently proposed algorithms for S-DLSR. We first present a taxonomy of these algorithms into six categories based on the approach taken to include label information into the learning of the dictionary and/or sparse representation. For each category, we draw connections between the algorithms in this category and present a unified framework for them. We then provide guidelines for applied researchers on how to represent and learn the building blocks of an S-DLSR solution based on the problem at hand. This review provides a broad, yet deep, view of the state-of-the-art methods for S-DLSR and allows for the advancement of research and development in this emerging area of research

    Local Label Propagation for Large-Scale Semi-Supervised Learning

    Full text link
    A significant issue in training deep neural networks to solve supervised learning tasks is the need for large numbers of labelled datapoints. The goal of semi-supervised learning is to leverage ubiquitous unlabelled data, together with small quantities of labelled data, to achieve high task performance. Though substantial recent progress has been made in developing semi-supervised algorithms that are effective for comparatively small datasets, many of these techniques do not scale readily to the large (unlaballed) datasets characteristic of real-world applications. In this paper we introduce a novel approach to scalable semi-supervised learning, called Local Label Propagation (LLP). Extending ideas from recent work on unsupervised embedding learning, LLP first embeds datapoints, labelled and otherwise, in a common latent space using a deep neural network. It then propagates pseudolabels from known to unknown datapoints in a manner that depends on the local geometry of the embedding, taking into account both inter-point distance and local data density as a weighting on propagation likelihood. The parameters of the deep embedding are then trained to simultaneously maximize pseudolabel categorization performance as well as a metric of the clustering of datapoints within each psuedo-label group, iteratively alternating stages of network training and label propagation. We illustrate the utility of the LLP method on the ImageNet dataset, achieving results that outperform previous state-of-the-art scalable semi-supervised learning algorithms by large margins, consistently across a wide variety of training regimes. We also show that the feature representation learned with LLP transfers well to scene recognition in the Places 205 dataset

    Improving Generalization via Scalable Neighborhood Component Analysis

    Full text link
    Current major approaches to visual recognition follow an end-to-end formulation that classifies an input image into one of the pre-determined set of semantic categories. Parametric softmax classifiers are a common choice for such a closed world with fixed categories, especially when big labeled data is available during training. However, this becomes problematic for open-set scenarios where new categories are encountered with very few examples for learning a generalizable parametric classifier. We adopt a non-parametric approach for visual recognition by optimizing feature embeddings instead of parametric classifiers. We use a deep neural network to learn the visual feature that preserves the neighborhood structure in the semantic space, based on the Neighborhood Component Analysis (NCA) criterion. Limited by its computational bottlenecks, we devise a mechanism to use augmented memory to scale NCA for large datasets and very deep networks. Our experiments deliver not only remarkable performance on ImageNet classification for such a simple non-parametric method, but most importantly a more generalizable feature representation for sub-category discovery and few-shot recognition.Comment: To appear in ECCV 201

    Local Aggregation for Unsupervised Learning of Visual Embeddings

    Full text link
    Unsupervised approaches to learning in neural networks are of substantial interest for furthering artificial intelligence, both because they would enable the training of networks without the need for large numbers of expensive annotations, and because they would be better models of the kind of general-purpose learning deployed by humans. However, unsupervised networks have long lagged behind the performance of their supervised counterparts, especially in the domain of large-scale visual recognition. Recent developments in training deep convolutional embeddings to maximize non-parametric instance separation and clustering objectives have shown promise in closing this gap. Here, we describe a method that trains an embedding function to maximize a metric of local aggregation, causing similar data instances to move together in the embedding space, while allowing dissimilar instances to separate. This aggregation metric is dynamic, allowing soft clusters of different scales to emerge. We evaluate our procedure on several large-scale visual recognition datasets, achieving state-of-the-art unsupervised transfer learning performance on object recognition in ImageNet, scene recognition in Places 205, and object detection in PASCAL VOC

    Unsupervised Feature Learning by Cross-Level Instance-Group Discrimination

    Full text link
    Unsupervised feature learning has made great strides with contrastive learning based on instance discrimination and invariant mapping, as benchmarked on curated class-balanced datasets. However, natural data could be highly correlated and long-tail distributed. Natural between-instance similarity conflicts with the presumed instance distinction, causing unstable training and poor performance. Our idea is to discover and integrate between-instance similarity into contrastive learning, not directly by instance grouping, but by cross-level discrimination (CLD) between instances and local instance groups. While invariant mapping of each instance is imposed by attraction within its augmented views, between-instance similarity emerges from common repulsion against instance groups. Our batch-wise and cross-view comparisons also greatly improve the positive/negative sample ratio of contrastive learning and achieve better invariant mapping. To effect both grouping and discrimination objectives, we impose them on features separately derived from a shared representation. In addition, we propose normalized projection heads and unsupervised hyper-parameter tuning for the first time. Our extensive experimentation demonstrates that CLD is a lean and powerful add-on to existing methods (e.g., NPID, MoCo, InfoMin, BYOL) on highly correlated, long-tail, or balanced datasets. It not only achieves new state-of-the-art on self-supervision, semi-supervision, and transfer learning benchmarks, but also beats MoCo v2 and SimCLR on every reported performance attained with a much larger compute. CLD effectively extends unsupervised learning to natural data and brings it closer to real-world applications.Comment: 10 page
    • …
    corecore