4 research outputs found

    Improving Classification in Single and Multi-View Images

    Get PDF
    Image classification is a sub-field of computer vision that focuses on identifying objects within digital images. In order to improve image classification we must address the following areas of improvement: 1) Single and Multi-View data quality using data pre-processing techniques. 2) Enhancing deep feature learning to extract alternative representation of the data. 3) Improving decision or prediction of labels. This dissertation presents a series of four published papers that explore different improvements of image classification. In our first paper, we explore the Siamese network architecture to create a Convolution Neural Network based similarity metric. We learn the priority features that differentiate two given input images. The metric proposed achieves state-of-the-art Fβ measure. In our second paper, we explore multi-view data classification. We investigate the application of Generative Adversarial Networks GANs on Multi-view data image classification and few-shot learning. Experimental results show that our method outperforms state-of-the-art research. In our third paper, we take on the challenge of improving ResNet backbone model. For this task, we focus on improving channel attention mechanisms. We utilize Discrete Wavelet Transform compression to address the channel representation problem. Experimental results on ImageNet shows that our method outperforms baseline SENet-34 and SOTA FcaNet-34 at no extra computational cost. In our fourth paper, we investigate further the potential of orthogonalization of filters for extraction of diverse information for channel attention. We prove that using only random constant orthogonal filters is sufficient enough to achieve good channel attention. We test our proposed method using ImageNet, Places365, and Birds datasets for image classification, MS-COCO for object detection, and instance segmentation tasks. Our method outperforms FcaNet, and WaveNet and achieves the state-of-the-art results

    Improving Classification in Single and Multi-View Images

    Get PDF
    Image classification is a sub-field of computer vision that focuses on identifying objects within digital images. In order to improve image classification we must address the following areas of improvement: 1) Single and Multi-View data quality using data pre-processing techniques. 2) Enhancing deep feature learning to extract alternative representation of the data. 3) Improving decision or prediction of labels. This dissertation presents a series of four published papers that explore different improvements of image classification. In our first paper, we explore the Siamese network architecture to create a Convolution Neural Network based similarity metric. We learn the priority features that differentiate two given input images. The metric proposed achieves state-of-the-art Fβ measure. In our second paper, we explore multi-view data classification. We investigate the application of Generative Adversarial Networks GANs on Multi-view data image classification and few-shot learning. Experimental results show that our method outperforms state-of-the-art research. In our third paper, we take on the challenge of improving ResNet backbone model. For this task, we focus on improving channel attention mechanisms. We utilize Discrete Wavelet Transform compression to address the channel representation problem. Experimental results on ImageNet shows that our method outperforms baseline SENet-34 and SOTA FcaNet-34 at no extra computational cost. In our fourth paper, we investigate further the potential of orthogonalization of filters for extraction of diverse information for channel attention. We prove that using only random constant orthogonal filters is sufficient enough to achieve good channel attention. We test our proposed method using ImageNet, Places365, and Birds datasets for image classification, MS-COCO for object detection, and instance segmentation tasks. Our method outperforms FcaNet, and WaveNet and achieves the state-of-the-art results

    Learning Discriminative Feature Representations for Visual Categorization

    Get PDF
    Learning discriminative feature representations has attracted a great deal of attention due to its potential value and wide usage in a variety of areas, such as image/video recognition and retrieval, human activities analysis, intelligent surveillance and human-computer interaction. In this thesis we first introduce a new boosted key-frame selection scheme for action recognition. Specifically, we propose to select a subset of key poses for the representation of each action via AdaBoost and a new classifier, namely WLNBNN, is then developed for final classification. The experimental results of the proposed method are 0.6% - 13.2% better than previous work. After that, a domain-adaptive learning approach based on multiobjective genetic programming (MOGP) has been developed for image classification. In this method, a set of primitive 2-D operators are randomly combined to construct feature descriptors through the MOGP evolving and then evaluated by two objective fitness criteria, i.e., the classification error and the tree complexity. Later, the (near-)optimal feature descriptor can be obtained. The proposed approach can achieve 0.9% ∼ 25.9% better performance compared with state-of-the-art methods. Moreover, effective dimensionality reduction algorithms have also been widely used for obtaining better representations. In this thesis, we have proposed a novel linear unsupervised algorithm, termed Discriminative Partition Sparsity Analysis (DPSA), explicitly considering different probabilistic distributions that exist over the data points, simultaneously preserving the natural locality relationship among the data. All these above methods have been systematically evaluated on several public datasets, showing their accurate and robust performance (0.44% - 6.69% better than the previous) for action and image categorization. Targeting efficient image classification , we also introduce a novel unsupervised framework termed evolutionary compact embedding (ECE) which can automatically learn the task-specific binary hash codes. It is regarded as an optimization algorithm which combines the genetic programming (GP) and a boosting trick. The experimental results manifest ECE significantly outperform others by 1.58% - 2.19% for classification tasks. In addition, a supervised framework, bilinear local feature hashing (BLFH), has also been proposed to learn highly discriminative binary codes on the local descriptors for large-scale image similarity search. We address it as a nonconvex optimization problem to seek orthogonal projection matrices for hashing, which can successfully preserve the pairwise similarity between different local features and simultaneously take image-to-class (I2C) distances into consideration. BLFH produces outstanding results (0.017% - 0.149% better) compared to the state-of-the-art hashing techniques
    corecore