25 research outputs found

    Character Generation through Self-Supervised Vectorization

    Full text link
    The prevalent approach in self-supervised image generation is to operate on pixel level representations. While this approach can produce high quality images, it cannot benefit from the simplicity and innate quality of vectorization. Here we present a drawing agent that operates on stroke-level representation of images. At each time step, the agent first assesses the current canvas and decides whether to stop or keep drawing. When a 'draw' decision is made, the agent outputs a program indicating the stroke to be drawn. As a result, it produces a final raster image by drawing the strokes on a canvas, using a minimal number of strokes and dynamically deciding when to stop. We train our agent through reinforcement learning on MNIST and Omniglot datasets for unconditional generation and parsing (reconstruction) tasks. We utilize our parsing agent for exemplar generation and type conditioned concept generation in Omniglot challenge without any further training. We present successful results on all three generation tasks and the parsing task. Crucially, we do not need any stroke-level or vector supervision; we only use raster images for training

    Deep robot sketching: an application of deep Q-learning networks for human-like sketching

    Get PDF
    © 2023 The Authors. Published by Elsevier B.V. This research has been financed by ALMA, ‘‘Human Centric Algebraic Machine Learning’’, H2020 RIA under EU grant agreement 952091; ROBOASSET, ‘‘Sistemas robóticos inteligentes de diagnóstico y rehabilitación de terapias de miembro superior’’, PID2020-113508RBI00, financed by AEI/10.13039/501100011033; ‘‘RoboCity2030-DIHCM, Madrid Robotics Digital Innovation Hub’’, S2018/NMT-4331, financed by ‘‘Programas de Actividades I+D en la Comunidad de Madrid’’; ‘‘iREHAB: AI-powered Robotic Personalized Rehabilitation’’, ISCIIIAES-2022/003041 financed by ISCIII and UE; and EU structural fundsThe current success of Reinforcement Learning algorithms for its performance in complex environments has inspired many recent theoretical approaches to cognitive science. Artistic environments are studied within the cognitive science community as rich, natural, multi-sensory, multi-cultural environments. In this work, we propose the introduction of Reinforcement Learning for improving the control of artistic robot applications. Deep Q-learning Neural Networks (DQN) is one of the most successful algorithms for the implementation of Reinforcement Learning in robotics. DQN methods generate complex control policies for the execution of complex robot applications in a wide set of environments. Current art painting robot applications use simple control laws that limits the adaptability of the frameworks to a set of simple environments. In this work, the introduction of DQN within an art painting robot application is proposed. The goal is to study how the introduction of a complex control policy impacts the performance of a basic art painting robot application. The main expected contribution of this work is to serve as a first baseline for future works introducing DQN methods for complex art painting robot frameworks. Experiments consist of real world executions of human drawn sketches using the DQN generated policy and TEO, the humanoid robot. Results are compared in terms of similarity and obtained reward with respect to the reference inputs.Sección Deptal. de Arquitectura de Computadores y Automática (Físicas)Fac. de Ciencias FísicasTRUEUnión Europea. H2020Ministerio de Ciencia e Innovación (MICINN)/ AEI/10.13039/501100011033;Comunidad de MadridInstituto de Salud Carlos III (ISCIII)/UEROBOTICSLABpu

    Deep Learning for Free-Hand Sketch: A Survey

    Get PDF
    Free-hand sketches are highly illustrative, and have been widely used by humans to depict objects or stories from ancient times to the present. The recent prevalence of touchscreen devices has made sketch creation a much easier task than ever and consequently made sketch-oriented applications increasingly popular. The progress of deep learning has immensely benefited free-hand sketch research and applications. This paper presents a comprehensive survey of the deep learning techniques oriented at free-hand sketch data, and the applications that they enable. The main contents of this survey include: (i) A discussion of the intrinsic traits and unique challenges of free-hand sketch, to highlight the essential differences between sketch data and other data modalities, e.g., natural photos. (ii) A review of the developments of free-hand sketch research in the deep learning era, by surveying existing datasets, research topics, and the state-of-the-art methods through a detailed taxonomy and experimental evaluation. (iii) Promotion of future work via a discussion of bottlenecks, open problems, and potential research directions for the community.Comment: This paper is accepted by IEEE TPAM
    corecore