1,206 research outputs found

    Unsupervised Domain Adaptation via Discriminative Manifold Embedding and Alignment

    Full text link
    Unsupervised domain adaptation is effective in leveraging the rich information from the source domain to the unsupervised target domain. Though deep learning and adversarial strategy make an important breakthrough in the adaptability of features, there are two issues to be further explored. First, the hard-assigned pseudo labels on the target domain are risky to the intrinsic data structure. Second, the batch-wise training manner in deep learning limits the description of the global structure. In this paper, a Riemannian manifold learning framework is proposed to achieve transferability and discriminability consistently. As to the first problem, this method establishes a probabilistic discriminant criterion on the target domain via soft labels. Further, this criterion is extended to a global approximation scheme for the second issue; such approximation is also memory-saving. The manifold metric alignment is exploited to be compatible with the embedding space. A theoretical error bound is derived to facilitate the alignment. Extensive experiments have been conducted to investigate the proposal and results of the comparison study manifest the superiority of consistent manifold learning framework.Comment: Accepted to AAAI 2020. Code available: \<https://github.com/LavieLuo/DRMEA

    Recent Advances in Transfer Learning for Cross-Dataset Visual Recognition: A Problem-Oriented Perspective

    Get PDF
    This paper takes a problem-oriented perspective and presents a comprehensive review of transfer learning methods, both shallow and deep, for cross-dataset visual recognition. Specifically, it categorises the cross-dataset recognition into seventeen problems based on a set of carefully chosen data and label attributes. Such a problem-oriented taxonomy has allowed us to examine how different transfer learning approaches tackle each problem and how well each problem has been researched to date. The comprehensive problem-oriented review of the advances in transfer learning with respect to the problem has not only revealed the challenges in transfer learning for visual recognition, but also the problems (e.g. eight of the seventeen problems) that have been scarcely studied. This survey not only presents an up-to-date technical review for researchers, but also a systematic approach and a reference for a machine learning practitioner to categorise a real problem and to look up for a possible solution accordingly

    Unsupervised Domain Adaptation via Discriminative Manifold Propagation

    Full text link
    Unsupervised domain adaptation is effective in leveraging rich information from a labeled source domain to an unlabeled target domain. Though deep learning and adversarial strategy made a significant breakthrough in the adaptability of features, there are two issues to be further studied. First, hard-assigned pseudo labels on the target domain are arbitrary and error-prone, and direct application of them may destroy the intrinsic data structure. Second, batch-wise training of deep learning limits the characterization of the global structure. In this paper, a Riemannian manifold learning framework is proposed to achieve transferability and discriminability simultaneously. For the first issue, this framework establishes a probabilistic discriminant criterion on the target domain via soft labels. Based on pre-built prototypes, this criterion is extended to a global approximation scheme for the second issue. Manifold metric alignment is adopted to be compatible with the embedding space. The theoretical error bounds of different alignment metrics are derived for constructive guidance. The proposed method can be used to tackle a series of variants of domain adaptation problems, including both vanilla and partial settings. Extensive experiments have been conducted to investigate the method and a comparative study shows the superiority of the discriminative manifold learning framework.Comment: To be published in IEEE Transactions on Pattern Analysis and Machine Intelligenc

    Kernel Manifold Alignment

    Full text link
    We introduce a kernel method for manifold alignment (KEMA) and domain adaptation that can match an arbitrary number of data sources without needing corresponding pairs, just few labeled examples in all domains. KEMA has interesting properties: 1) it generalizes other manifold alignment methods, 2) it can align manifolds of very different complexities, performing a sort of manifold unfolding plus alignment, 3) it can define a domain-specific metric to cope with multimodal specificities, 4) it can align data spaces of different dimensionality, 5) it is robust to strong nonlinear feature deformations, and 6) it is closed-form invertible which allows transfer across-domains and data synthesis. We also present a reduced-rank version for computational efficiency and discuss the generalization performance of KEMA under Rademacher principles of stability. KEMA exhibits very good performance over competing methods in synthetic examples, visual object recognition and recognition of facial expressions tasks
    • …
    corecore