1,553 research outputs found

    Unsupervised Domain Adaptation for Neural Machine Translation with Domain-Aware Feature Embeddings

    Full text link
    The recent success of neural machine translation models relies on the availability of high quality, in-domain data. Domain adaptation is required when domain-specific data is scarce or nonexistent. Previous unsupervised domain adaptation strategies include training the model with in-domain copied monolingual or back-translated data. However, these methods use generic representations for text regardless of domain shift, which makes it infeasible for translation models to control outputs conditional on a specific domain. In this work, we propose an approach that adapts models with domain-aware feature embeddings, which are learned via an auxiliary language modeling task. Our approach allows the model to assign domain-specific representations to words and output sentences in the desired domain. Our empirical results demonstrate the effectiveness of the proposed strategy, achieving consistent improvements in multiple experimental settings. In addition, we show that combining our method with back translation can further improve the performance of the model.Comment: EMNLP 201

    Zero-Resource Cross-Domain Named Entity Recognition

    Full text link
    Existing models for cross-domain named entity recognition (NER) rely on numerous unlabeled corpus or labeled NER training data in target domains. However, collecting data for low-resource target domains is not only expensive but also time-consuming. Hence, we propose a cross-domain NER model that does not use any external resources. We first introduce a Multi-Task Learning (MTL) by adding a new objective function to detect whether tokens are named entities or not. We then introduce a framework called Mixture of Entity Experts (MoEE) to improve the robustness for zero-resource domain adaptation. Finally, experimental results show that our model outperforms strong unsupervised cross-domain sequence labeling models, and the performance of our model is close to that of the state-of-the-art model which leverages extensive resources.Comment: RepL4NLP 202

    Universal Semi-Supervised Semantic Segmentation

    Full text link
    In recent years, the need for semantic segmentation has arisen across several different applications and environments. However, the expense and redundancy of annotation often limits the quantity of labels available for training in any domain, while deployment is easier if a single model works well across domains. In this paper, we pose the novel problem of universal semi-supervised semantic segmentation and propose a solution framework, to meet the dual needs of lower annotation and deployment costs. In contrast to counterpoints such as fine tuning, joint training or unsupervised domain adaptation, universal semi-supervised segmentation ensures that across all domains: (i) a single model is deployed, (ii) unlabeled data is used, (iii) performance is improved, (iv) only a few labels are needed and (v) label spaces may differ. To address this, we minimize supervised as well as within and cross-domain unsupervised losses, introducing a novel feature alignment objective based on pixel-aware entropy regularization for the latter. We demonstrate quantitative advantages over other approaches on several combinations of segmentation datasets across different geographies (Germany, England, India) and environments (outdoors, indoors), as well as qualitative insights on the aligned representations.Comment: Accepted as poster presentation at ICCV 201

    Beneath the Tip of the Iceberg: Current Challenges and New Directions in Sentiment Analysis Research

    Full text link
    Sentiment analysis as a field has come a long way since it was first introduced as a task nearly 20 years ago. It has widespread commercial applications in various domains like marketing, risk management, market research, and politics, to name a few. Given its saturation in specific subtasks -- such as sentiment polarity classification -- and datasets, there is an underlying perception that this field has reached its maturity. In this article, we discuss this perception by pointing out the shortcomings and under-explored, yet key aspects of this field that are necessary to attain true sentiment understanding. We analyze the significant leaps responsible for its current relevance. Further, we attempt to chart a possible course for this field that covers many overlooked and unanswered questions.Comment: Published in the IEEE Transactions on Affective Computing (TAFFC

    Cross-language Learning with Adversarial Neural Networks: Application to Community Question Answering

    Full text link
    We address the problem of cross-language adaptation for question-question similarity reranking in community question answering, with the objective to port a system trained on one input language to another input language given labeled training data for the first language and only unlabeled data for the second language. In particular, we propose to use adversarial training of neural networks to learn high-level features that are discriminative for the main learning task, and at the same time are invariant across the input languages. The evaluation results show sizable improvements for our cross-language adversarial neural network (CLANN) model over a strong non-adversarial system.Comment: CoNLL-2017: The SIGNLL Conference on Computational Natural Language Learning; cross-language adversarial neural network (CLANN) model; adversarial training; cross-language adaptation; community question answering; question-question similarit

    Generating and Exploiting Large-scale Pseudo Training Data for Zero Pronoun Resolution

    Full text link
    Most existing approaches for zero pronoun resolution are heavily relying on annotated data, which is often released by shared task organizers. Therefore, the lack of annotated data becomes a major obstacle in the progress of zero pronoun resolution task. Also, it is expensive to spend manpower on labeling the data for better performance. To alleviate the problem above, in this paper, we propose a simple but novel approach to automatically generate large-scale pseudo training data for zero pronoun resolution. Furthermore, we successfully transfer the cloze-style reading comprehension neural network model into zero pronoun resolution task and propose a two-step training mechanism to overcome the gap between the pseudo training data and the real one. Experimental results show that the proposed approach significantly outperforms the state-of-the-art systems with an absolute improvements of 3.1% F-score on OntoNotes 5.0 data.Comment: 8+2 pages, published as a conference paper at ACL2017 (long paper

    Investigating the Working of Text Classifiers

    Full text link
    Text classification is one of the most widely studied tasks in natural language processing. Motivated by the principle of compositionality, large multilayer neural network models have been employed for this task in an attempt to effectively utilize the constituent expressions. Almost all of the reported work train large networks using discriminative approaches, which come with a caveat of no proper capacity control, as they tend to latch on to any signal that may not generalize. Using various recent state-of-the-art approaches for text classification, we explore whether these models actually learn to compose the meaning of the sentences or still just focus on some keywords or lexicons for classifying the document. To test our hypothesis, we carefully construct datasets where the training and test splits have no direct overlap of such lexicons, but overall language structure would be similar. We study various text classifiers and observe that there is a big performance drop on these datasets. Finally, we show that even simple models with our proposed regularization techniques, which disincentivize focusing on key lexicons, can substantially improve classification accuracy.Comment: Proceedings of COLING 2018, the 27th International Conference on Computational Linguistics: Technical Papers (COLING 2018), NIPS 2017 Workshop on Deep Learning: Bridging Theory and Practic

    Sliced Wasserstein Discrepancy for Unsupervised Domain Adaptation

    Full text link
    In this work, we connect two distinct concepts for unsupervised domain adaptation: feature distribution alignment between domains by utilizing the task-specific decision boundary and the Wasserstein metric. Our proposed sliced Wasserstein discrepancy (SWD) is designed to capture the natural notion of dissimilarity between the outputs of task-specific classifiers. It provides a geometrically meaningful guidance to detect target samples that are far from the support of the source and enables efficient distribution alignment in an end-to-end trainable fashion. In the experiments, we validate the effectiveness and genericness of our method on digit and sign recognition, image classification, semantic segmentation, and object detection.Comment: Accepted at CVPR 201

    When Autonomous Systems Meet Accuracy and Transferability through AI: A Survey

    Full text link
    With widespread applications of artificial intelligence (AI), the capabilities of the perception, understanding, decision-making and control for autonomous systems have improved significantly in the past years. When autonomous systems consider the performance of accuracy and transferability, several AI methods, like adversarial learning, reinforcement learning (RL) and meta-learning, show their powerful performance. Here, we review the learning-based approaches in autonomous systems from the perspectives of accuracy and transferability. Accuracy means that a well-trained model shows good results during the testing phase, in which the testing set shares a same task or a data distribution with the training set. Transferability means that when a well-trained model is transferred to other testing domains, the accuracy is still good. Firstly, we introduce some basic concepts of transfer learning and then present some preliminaries of adversarial learning, RL and meta-learning. Secondly, we focus on reviewing the accuracy or transferability or both of them to show the advantages of adversarial learning, like generative adversarial networks (GANs), in typical computer vision tasks in autonomous systems, including image style transfer, image superresolution, image deblurring/dehazing/rain removal, semantic segmentation, depth estimation, pedestrian detection and person re-identification (re-ID). Then, we further review the performance of RL and meta-learning from the aspects of accuracy or transferability or both of them in autonomous systems, involving pedestrian tracking, robot navigation and robotic manipulation. Finally, we discuss several challenges and future topics for using adversarial learning, RL and meta-learning in autonomous systems

    Integrating Semantic Knowledge to Tackle Zero-shot Text Classification

    Get PDF
    Insufficient or even unavailable training data of emerging classes is a big challenge of many classification tasks, including text classification. Recognising text documents of classes that have never been seen in the learning stage, so-called zero-shot text classification, is therefore difficult and only limited previous works tackled this problem. In this paper, we propose a two-phase framework together with data augmentation and feature augmentation to solve this problem. Four kinds of semantic knowledge (word embeddings, class descriptions, class hierarchy, and a general knowledge graph) are incorporated into the proposed framework to deal with instances of unseen classes effectively. Experimental results show that each and the combination of the two phases achieve the best overall accuracy compared with baselines and recent approaches in classifying real-world texts under the zero-shot scenario.Comment: Accepted NAACL-HLT 201
    • …
    corecore