5,686 research outputs found

    ProSFDA: Prompt Learning based Source-free Domain Adaptation for Medical Image Segmentation

    Full text link
    The domain discrepancy existed between medical images acquired in different situations renders a major hurdle in deploying pre-trained medical image segmentation models for clinical use. Since it is less possible to distribute training data with the pre-trained model due to the huge data size and privacy concern, source-free unsupervised domain adaptation (SFDA) has recently been increasingly studied based on either pseudo labels or prior knowledge. However, the image features and probability maps used by pseudo label-based SFDA and the consistent prior assumption and the prior prediction network used by prior-guided SFDA may become less reliable when the domain discrepancy is large. In this paper, we propose a \textbf{Pro}mpt learning based \textbf{SFDA} (\textbf{ProSFDA}) method for medical image segmentation, which aims to improve the quality of domain adaption by minimizing explicitly the domain discrepancy. Specifically, in the prompt learning stage, we estimate source-domain images via adding a domain-aware prompt to target-domain images, then optimize the prompt via minimizing the statistic alignment loss, and thereby prompt the source model to generate reliable predictions on (altered) target-domain images. In the feature alignment stage, we also align the features of target-domain images and their styles-augmented counterparts to optimize the source model, and hence push the model to extract compact features. We evaluate our ProSFDA on two multi-domain medical image segmentation benchmarks. Our results indicate that the proposed ProSFDA outperforms substantially other SFDA methods and is even comparable to UDA methods. Code will be available at \url{https://github.com/ShishuaiHu/ProSFDA}

    Making the Best of Both Worlds: A Domain-Oriented Transformer for Unsupervised Domain Adaptation

    Full text link
    Extensive studies on Unsupervised Domain Adaptation (UDA) have propelled the deployment of deep learning from limited experimental datasets into real-world unconstrained domains. Most UDA approaches align features within a common embedding space and apply a shared classifier for target prediction. However, since a perfectly aligned feature space may not exist when the domain discrepancy is large, these methods suffer from two limitations. First, the coercive domain alignment deteriorates target domain discriminability due to lacking target label supervision. Second, the source-supervised classifier is inevitably biased to source data, thus it may underperform in target domain. To alleviate these issues, we propose to simultaneously conduct feature alignment in two individual spaces focusing on different domains, and create for each space a domain-oriented classifier tailored specifically for that domain. Specifically, we design a Domain-Oriented Transformer (DOT) that has two individual classification tokens to learn different domain-oriented representations, and two classifiers to preserve domain-wise discriminability. Theoretical guaranteed contrastive-based alignment and the source-guided pseudo-label refinement strategy are utilized to explore both domain-invariant and specific information. Comprehensive experiments validate that our method achieves state-of-the-art on several benchmarks.Comment: Accepted at ACMMM 202

    MiniMax Entropy Network: Learning Category-Invariant Features for Domain Adaptation

    Full text link
    How to effectively learn from unlabeled data from the target domain is crucial for domain adaptation, as it helps reduce the large performance gap due to domain shift or distribution change. In this paper, we propose an easy-to-implement method dubbed MiniMax Entropy Networks (MMEN) based on adversarial learning. Unlike most existing approaches which employ a generator to deal with domain difference, MMEN focuses on learning the categorical information from unlabeled target samples with the help of labeled source samples. Specifically, we set an unfair multi-class classifier named categorical discriminator, which classifies source samples accurately but be confused about the categories of target samples. The generator learns a common subspace that aligns the unlabeled samples based on the target pseudo-labels. For MMEN, we also provide theoretical explanations to show that the learning of feature alignment reduces domain mismatch at the category level. Experimental results on various benchmark datasets demonstrate the effectiveness of our method over existing state-of-the-art baselines.Comment: 8 pages, 6 figure
    • …
    corecore