798 research outputs found

    Learning Spectral-Spatial-Temporal Features via a Recurrent Convolutional Neural Network for Change Detection in Multispectral Imagery

    Full text link
    Change detection is one of the central problems in earth observation and was extensively investigated over recent decades. In this paper, we propose a novel recurrent convolutional neural network (ReCNN) architecture, which is trained to learn a joint spectral-spatial-temporal feature representation in a unified framework for change detection in multispectral images. To this end, we bring together a convolutional neural network (CNN) and a recurrent neural network (RNN) into one end-to-end network. The former is able to generate rich spectral-spatial feature representations, while the latter effectively analyzes temporal dependency in bi-temporal images. In comparison with previous approaches to change detection, the proposed network architecture possesses three distinctive properties: 1) It is end-to-end trainable, in contrast to most existing methods whose components are separately trained or computed; 2) it naturally harnesses spatial information that has been proven to be beneficial to change detection task; 3) it is capable of adaptively learning the temporal dependency between multitemporal images, unlike most of algorithms that use fairly simple operation like image differencing or stacking. As far as we know, this is the first time that a recurrent convolutional network architecture has been proposed for multitemporal remote sensing image analysis. The proposed network is validated on real multispectral data sets. Both visual and quantitative analysis of experimental results demonstrates competitive performance in the proposed mode

    GETNET: A General End-to-end Two-dimensional CNN Framework for Hyperspectral Image Change Detection

    Full text link
    Change detection (CD) is an important application of remote sensing, which provides timely change information about large-scale Earth surface. With the emergence of hyperspectral imagery, CD technology has been greatly promoted, as hyperspectral data with the highspectral resolution are capable of detecting finer changes than using the traditional multispectral imagery. Nevertheless, the high dimension of hyperspectral data makes it difficult to implement traditional CD algorithms. Besides, endmember abundance information at subpixel level is often not fully utilized. In order to better handle high dimension problem and explore abundance information, this paper presents a General End-to-end Two-dimensional CNN (GETNET) framework for hyperspectral image change detection (HSI-CD). The main contributions of this work are threefold: 1) Mixed-affinity matrix that integrates subpixel representation is introduced to mine more cross-channel gradient features and fuse multi-source information; 2) 2-D CNN is designed to learn the discriminative features effectively from multi-source data at a higher level and enhance the generalization ability of the proposed CD algorithm; 3) A new HSI-CD data set is designed for the objective comparison of different methods. Experimental results on real hyperspectral data sets demonstrate the proposed method outperforms most of the state-of-the-arts

    Deep learning-based change detection in remote sensing images:a review

    Get PDF
    Images gathered from different satellites are vastly available these days due to the fast development of remote sensing (RS) technology. These images significantly enhance the data sources of change detection (CD). CD is a technique of recognizing the dissimilarities in the images acquired at distinct intervals and are used for numerous applications, such as urban area development, disaster management, land cover object identification, etc. In recent years, deep learning (DL) techniques have been used tremendously in change detection processes, where it has achieved great success because of their practical applications. Some researchers have even claimed that DL approaches outperform traditional approaches and enhance change detection accuracy. Therefore, this review focuses on deep learning techniques, such as supervised, unsupervised, and semi-supervised for different change detection datasets, such as SAR, multispectral, hyperspectral, VHR, and heterogeneous images, and their advantages and disadvantages will be highlighted. In the end, some significant challenges are discussed to understand the context of improvements in change detection datasets and deep learning models. Overall, this review will be beneficial for the future development of CD methods

    Detection of forest windthrows with bitemporal COSMO-SkyMed and Sentinel-1 SAR data

    Get PDF
    Wind represents a primary source of disturbances in forests, necessitating an assessment of the resulting damage to ensure appropriate forest management. Remote sensing, encompassing both active and passive techniques, offers a valuable and efficient approach for this purpose, enabling coverage of large areas while being costeffective. Passive remote sensing data could be affected by the presence of clouds, unlike active systems such as Synthetic Aperture Radar (SAR) which are relatively less affected. Therefore, this study aims to explore the utilization of bitemporal SAR data for windthrow detection in mountainous regions. Specifically, we investigated how the detection outcomes vary based on three factors: i) the SAR wavelength (X-band or C-band), ii) the acquisition period of the pre- and post-event images (summer, autumn, or winter), and iii) the forest type (evergreen vs. deciduous). Our analysis considers two SAR satellite constellations: COSMO-SkyMed (band-X, with a pixel spacing of 2.5 m and 10 m) and Sentinel-1 (band-C, with a pixel spacing of 10 m). We focused on three study sites located in the Trentino-South Tyrol region of Italy, which experienced significant forest damage during the Vaia storm from 27th to 30th October 2018. To accomplish our objectives, we employed a detailpreserving, scale-driven approach for change detection in bitemporal SAR data. The results demonstrate that: i) the algorithm exhibits notably better performance when utilizing X-band data, achieving a highest kappa accuracy of 0.473 and a balanced accuracy of 76.1%; ii) the pixel spacing has an influence on the accuracy, with COSMO-SkyMed data achieving kappa values of 0.473 and 0.394 at pixel spacings of 2.5 m and 10 m, respectively; iii) the post-event image acquisition season significantly affects the algorithm’s performance, with summer imagery yielding superior results compared to winter imagery; and iv) the forest type (evergreen vs. deciduous) has a noticeable impact on the results, particularly when considering autumn/winter dat

    A Study on Change Detection in Hyperspectral Image

    Get PDF
    Change detection is the procedure of obtaining changes between two Hyperspectral pictures of same topographical zone taken at two unique times. It conveys the essential and important change data of a scene. Due to a breakthrough in Hyperspectral remote sensing Hyperspectral remote sensors can capable of producing narrow spectral resolution images. These high resolution spectral and spatial hyperspectral images can find small variations in images. This work describes an efficient algorithm for detecting changes in Hyperspectral images by using spectral signatures of Hyperspectral images. The objective is developing of a proficient algorithm that can show even small variations in Hyperspectral images. It reviews Hierarchical method for finding changes in Hyperspectral images by comparing spectral homogeneity between spectral change vectors. For any scenery locating and also exploration regarding adjust delivers treasured data regarding achievable changes. Hyperspectral satellite detectors get effectiveness throughout gathering data with large spectral rings. These types of detectors typically deal with spatially and also spectrally high definition graphics and this can be used by adjust discovery. This particular function is actually elaborated and also applied your adjust discovery procedure by simply controlling Hyperspectral graphics. The main aim with this thesis is actually studying and also constructing of Hyperspectral adjust discovery algorithms This kind of analysed approach is really applied to assess Hyperspectral picture image resolution files along with the approach analysed in this particular thesis is really change breakthrough making use of Hierarchical method of spectral change vectors and also making use of principal ingredient examination and also k-means clustering. This particular document offers applying and also verify of trends Hyperspectral image

    Performance analysis of change detection techniques for land use land cover

    Get PDF
    Remotely sensed satellite images have become essential to observe the spatial and temporal changes occurring due to either natural phenomenon or man-induced changes on the earth’s surface. Real time monitoring of this data provides useful information related to changes in extent of urbanization, environmental changes, water bodies, and forest. Through the use of remote sensing technology and geographic information system tools, it has become easier to monitor changes from past to present. In the present scenario, choosing a suitable change detection method plays a pivotal role in any remote sensing project. Previously, digital change detection was a tedious task. With the advent of machine learning techniques, it has become comparatively easier to detect changes in the digital images. The study gives a brief account of the main techniques of change detection related to land use land cover information. An effort is made to compare widely used change detection methods used to identify changes and discuss the need for development of enhanced change detection methods

    Adaptive feature extraction: Exploring the search space with change detection using inductive learners and image processing

    Get PDF
    corecore