58 research outputs found

    Unsupervised Domain Adaptation for 3D Keypoint Estimation via View Consistency

    Full text link
    In this paper, we introduce a novel unsupervised domain adaptation technique for the task of 3D keypoint prediction from a single depth scan or image. Our key idea is to utilize the fact that predictions from different views of the same or similar objects should be consistent with each other. Such view consistency can provide effective regularization for keypoint prediction on unlabeled instances. In addition, we introduce a geometric alignment term to regularize predictions in the target domain. The resulting loss function can be effectively optimized via alternating minimization. We demonstrate the effectiveness of our approach on real datasets and present experimental results showing that our approach is superior to state-of-the-art general-purpose domain adaptation techniques.Comment: ECCV 201

    Deep learning with 3D and label geometry

    Get PDF
    A fine-grained understanding of an image is two-fold: visual understanding and semantic understanding. The former strives to understand the intrinsic properties of the object in the image, whereas the latter aims at associating the diverse objects with certain semantics. All of these form the basis of an in-depth understanding of images. Today’s default architectures of deep convolutional networks have already shown a remarkable ability in capturing the 2D visual appearances of images, and mapping visual content to semantic classes thereafter. However, research on fine-grained image understanding, such as inferring the intrinsic 3D information and more structured semantics, is less explored. In this thesis, we look at the problems by asking "How to better utilize geometry for better image understanding?" In the first part, we research visual image understanding with 3D geometry. We show that it is possible to automatically explain a variety of visual contents in the image with texture-free 3D shapes. Furthermore, we develop a deep learning framework to reliably recover a set of 3D geometric attributes, such as the pose of an object and the surface normal of its shape, from a 2D image. In the second part, we explore label geometry for semantic image understanding. We find that a set of image classification problems have geometrically similar probability spaces. Therefore, label geometry is introduced, unifying one-vs.-rest classification, multi-label classification, and out-of-distribution classification in one framework. Moreover, we show that learned hierarchical label geometries can balance the accuracy and specificity of an image classifier

    A survey on deep geometry learning: from a representation perspective

    Get PDF
    Researchers have achieved great success in dealing with 2D images using deep learning. In recent years, 3D computer vision and geometry deep learning have gained ever more attention. Many advanced techniques for 3D shapes have been proposed for different applications. Unlike 2D images, which can be uniformly represented by a regular grid of pixels, 3D shapes have various representations, such as depth images, multi-view images, voxels, point clouds, meshes, implicit surfaces, etc. The performance achieved in different applications largely depends on the representation used, and there is no unique representation that works well for all applications. Therefore, in this survey, we review recent developments in deep learning for 3D geometry from a representation perspective, summarizing the advantages and disadvantages of different representations for different applications. We also present existing datasets in these representations and further discuss future research directions

    Challenges for Monocular 6D Object Pose Estimation in Robotics

    Full text link
    Object pose estimation is a core perception task that enables, for example, object grasping and scene understanding. The widely available, inexpensive and high-resolution RGB sensors and CNNs that allow for fast inference based on this modality make monocular approaches especially well suited for robotics applications. We observe that previous surveys on object pose estimation establish the state of the art for varying modalities, single- and multi-view settings, and datasets and metrics that consider a multitude of applications. We argue, however, that those works' broad scope hinders the identification of open challenges that are specific to monocular approaches and the derivation of promising future challenges for their application in robotics. By providing a unified view on recent publications from both robotics and computer vision, we find that occlusion handling, novel pose representations, and formalizing and improving category-level pose estimation are still fundamental challenges that are highly relevant for robotics. Moreover, to further improve robotic performance, large object sets, novel objects, refractive materials, and uncertainty estimates are central, largely unsolved open challenges. In order to address them, ontological reasoning, deformability handling, scene-level reasoning, realistic datasets, and the ecological footprint of algorithms need to be improved.Comment: arXiv admin note: substantial text overlap with arXiv:2302.1182

    Multi-Modal 3D Object Detection in Autonomous Driving: a Survey

    Full text link
    In the past few years, we have witnessed rapid development of autonomous driving. However, achieving full autonomy remains a daunting task due to the complex and dynamic driving environment. As a result, self-driving cars are equipped with a suite of sensors to conduct robust and accurate environment perception. As the number and type of sensors keep increasing, combining them for better perception is becoming a natural trend. So far, there has been no indepth review that focuses on multi-sensor fusion based perception. To bridge this gap and motivate future research, this survey devotes to review recent fusion-based 3D detection deep learning models that leverage multiple sensor data sources, especially cameras and LiDARs. In this survey, we first introduce the background of popular sensors for autonomous cars, including their common data representations as well as object detection networks developed for each type of sensor data. Next, we discuss some popular datasets for multi-modal 3D object detection, with a special focus on the sensor data included in each dataset. Then we present in-depth reviews of recent multi-modal 3D detection networks by considering the following three aspects of the fusion: fusion location, fusion data representation, and fusion granularity. After a detailed review, we discuss open challenges and point out possible solutions. We hope that our detailed review can help researchers to embark investigations in the area of multi-modal 3D object detection
    • …
    corecore