274 research outputs found

    Manipulating Attributes of Natural Scenes via Hallucination

    Full text link
    In this study, we explore building a two-stage framework for enabling users to directly manipulate high-level attributes of a natural scene. The key to our approach is a deep generative network which can hallucinate images of a scene as if they were taken at a different season (e.g. during winter), weather condition (e.g. in a cloudy day) or time of the day (e.g. at sunset). Once the scene is hallucinated with the given attributes, the corresponding look is then transferred to the input image while preserving the semantic details intact, giving a photo-realistic manipulation result. As the proposed framework hallucinates what the scene will look like, it does not require any reference style image as commonly utilized in most of the appearance or style transfer approaches. Moreover, it allows to simultaneously manipulate a given scene according to a diverse set of transient attributes within a single model, eliminating the need of training multiple networks per each translation task. Our comprehensive set of qualitative and quantitative results demonstrate the effectiveness of our approach against the competing methods.Comment: Accepted for publication in ACM Transactions on Graphic

    Taming AI Bots: Controllability of Neural States in Large Language Models

    Full text link
    We tackle the question of whether an agent can, by suitable choice of prompts, control an AI bot to any state. To that end, we first introduce a formal definition of ``meaning'' that is amenable to analysis. Then, we characterize ``meaningful data'' on which large language models (LLMs) are ostensibly trained, and ``well-trained LLMs'' through conditions that are largely met by today's LLMs. While a well-trained LLM constructs an embedding space of meanings that is Euclidean, meanings themselves do not form a vector (linear) subspace, but rather a quotient space within. We then characterize the subset of meanings that can be reached by the state of the LLMs for some input prompt, and show that a well-trained bot can reach any meaning albeit with small probability. We then introduce a stronger notion of controllability as {\em almost certain reachability}, and show that, when restricted to the space of meanings, an AI bot is controllable. We do so after introducing a functional characterization of attentive AI bots, and finally derive necessary and sufficient conditions for controllability. The fact that AI bots are controllable means that an adversary could steer them towards any state. However, the sampling process can be designed to counteract adverse actions and avoid reaching undesirable regions of state space before their boundary is crossed.Comment: TLDR: AI Bots are stochastic dynamical systems whose mental state can be controlled by both the user and the designer. The space of meanings, defined as equivalence classes of sentences, is learned during fine-tuning with human supervision, and safeguarding can be designed into the bot by establishing controls both at its input and outpu
    • …
    corecore