374 research outputs found

    Natural Language Generation enhances human decision-making with uncertain information

    Full text link
    Decision-making is often dependent on uncertain data, e.g. data associated with confidence scores or probabilities. We present a comparison of different information presentations for uncertain data and, for the first time, measure their effects on human decision-making. We show that the use of Natural Language Generation (NLG) improves decision-making under uncertainty, compared to state-of-the-art graphical-based representation methods. In a task-based study with 442 adults, we found that presentations using NLG lead to 24% better decision-making on average than the graphical presentations, and to 44% better decision-making when NLG is combined with graphics. We also show that women achieve significantly better results when presented with NLG output (an 87% increase on average compared to graphical presentations).Comment: 54th annual meeting of the Association for Computational Linguistics (ACL), Berlin 201

    Graph Learning and Its Applications: A Holistic Survey

    Full text link
    Graph learning is a prevalent domain that endeavors to learn the intricate relationships among nodes and the topological structure of graphs. These relationships endow graphs with uniqueness compared to conventional tabular data, as nodes rely on non-Euclidean space and encompass rich information to exploit. Over the years, graph learning has transcended from graph theory to graph data mining. With the advent of representation learning, it has attained remarkable performance in diverse scenarios, including text, image, chemistry, and biology. Owing to its extensive application prospects, graph learning attracts copious attention from the academic community. Despite numerous works proposed to tackle different problems in graph learning, there is a demand to survey previous valuable works. While some researchers have perceived this phenomenon and accomplished impressive surveys on graph learning, they failed to connect related objectives, methods, and applications in a more coherent way. As a result, they did not encompass current ample scenarios and challenging problems due to the rapid expansion of graph learning. Different from previous surveys on graph learning, we provide a holistic review that analyzes current works from the perspective of graph structure, and discusses the latest applications, trends, and challenges in graph learning. Specifically, we commence by proposing a taxonomy from the perspective of the composition of graph data and then summarize the methods employed in graph learning. We then provide a detailed elucidation of mainstream applications. Finally, based on the current trend of techniques, we propose future directions.Comment: 20 pages, 7 figures, 3 table

    Structural textile pattern recognition and processing based on hypergraphs

    Full text link
    The humanities, like many other areas of society, are currently undergoing major changes in the wake of digital transformation. However, in order to make collection of digitised material in this area easily accessible, we often still lack adequate search functionality. For instance, digital archives for textiles offer keyword search, which is fairly well understood, and arrange their content following a certain taxonomy, but search functionality at the level of thread structure is still missing. To facilitate the clustering and search, we introduce an approach for recognising similar weaving patterns based on their structures for textile archives. We first represent textile structures using hypergraphs and extract multisets of k-neighbourhoods describing weaving patterns from these graphs. Then, the resulting multisets are clustered using various distance measures and various clustering algorithms (K-Means for simplicity and hierarchical agglomerative algorithms for precision). We evaluate the different variants of our approach experimentally, showing that this can be implemented efficiently (meaning it has linear complexity), and demonstrate its quality to query and cluster datasets containing large textile samples. As, to the best of our knowledge, this is the first practical approach for explicitly modelling complex and irregular weaving patterns usable for retrieval, we aim at establishing a solid baseline

    Crowd-sourcing NLG Data: Pictures Elicit Better Data

    Full text link
    Recent advances in corpus-based Natural Language Generation (NLG) hold the promise of being easily portable across domains, but require costly training data, consisting of meaning representations (MRs) paired with Natural Language (NL) utterances. In this work, we propose a novel framework for crowdsourcing high quality NLG training data, using automatic quality control measures and evaluating different MRs with which to elicit data. We show that pictorial MRs result in better NL data being collected than logic-based MRs: utterances elicited by pictorial MRs are judged as significantly more natural, more informative, and better phrased, with a significant increase in average quality ratings (around 0.5 points on a 6-point scale), compared to using the logical MRs. As the MR becomes more complex, the benefits of pictorial stimuli increase. The collected data will be released as part of this submission.Comment: The 9th International Natural Language Generation conference INLG, 2016. 10 pages, 2 figures, 3 table
    • …
    corecore