21 research outputs found

    Optimum graph cuts for pruning binary partition trees of polarimetric SAR images

    Get PDF
    This paper investigates several optimum graph-cut techniques for pruning binary partition trees (BPTs) and their usefulness for the low-level processing of polarimetric synthetic aperture radar (PolSAR) images. BPTs group pixels to form homogeneous regions, which are hierarchically structured by inclusion in a binary tree. They provide multiple resolutions of description and easy access to subsets of regions. Once constructed, BPTs can be used for a large number of applications. Many of these applications consist in populating the tree with a specific feature and in applying a graph cut called pruning to extract a partition of the space. In this paper, different pruning examples involving the optimization of a global criterion are discussed and analyzed in the context of PolSAR images for segmentation. Through the objective evaluation of the resulting partitions by means of precision-and-recall-for-boundaries curves, the best pruning technique is identified, and the influence of the tree construction on the performances is assessed.Peer ReviewedPostprint (author's final draft

    Unsupervised Classification of Polarimetric SAR Images via Riemannian Sparse Coding

    Get PDF
    Unsupervised classification plays an important role in understanding polarimetric synthetic aperture radar (PolSAR) images. One of the typical representations of PolSAR data is in the form of Hermitian positive definite (HPD) covariance matrices. Most algorithms for unsupervised classification using this representation either use statistical distribution models or adopt polarimetric target decompositions. In this paper, we propose an unsupervised classification method by introducing a sparsity-based similarity measure on HPD matrices. Specifically, we first use a novel Riemannian sparse coding scheme for representing each HPD covariance matrix as sparse linear combinations of other HPD matrices, where the sparse reconstruction loss is defined by the Riemannian geodesic distance between HPD matrices. The coefficient vectors generated by this step reflect the neighborhood structure of HPD matrices embedded in the Euclidean space and hence can be used to define a similarity measure. We apply the scheme for PolSAR data, in which we first oversegment the images into superpixels, followed by representing each superpixel by an HPD matrix. These HPD matrices are then sparse coded, and the resulting sparse coefficient vectors are then clustered by spectral clustering using the neighborhood matrix generated by our similarity measure. The experimental results on different fully PolSAR images demonstrate the superior performance of the proposed classification approach against the state-of-the-art approachesThis work was supported in part by the National Natural Science Foundation of China under Grant 61331016 and Grant 61271401 and in part by the National Key Basic Research and Development Program of China under Contract 2013CB733404. The work of A. Cherian was supported by the Australian Research Council Centre of Excellence for Robotic Vision under Project CE140100016.

    Region-Based Classification of PolSAR Data Using Radial Basis Kernel Functions With Stochastic Distances

    Full text link
    Region-based classification of PolSAR data can be effectively performed by seeking for the assignment that minimizes a distance between prototypes and segments. Silva et al (2013) used stochastic distances between complex multivariate Wishart models which, differently from other measures, are computationally tractable. In this work we assess the robustness of such approach with respect to errors in the training stage, and propose an extension that alleviates such problems. We introduce robustness in the process by incorporating a combination of radial basis kernel functions and stochastic distances with Support Vector Machines (SVM). We consider several stochastic distances between Wishart: Bhatacharyya, Kullback-Leibler, Chi-Square, R\'{e}nyi, and Hellinger. We perform two case studies with PolSAR images, both simulated and from actual sensors, and different classification scenarios to compare the performance of Minimum Distance and SVM classification frameworks. With this, we model the situation of imperfect training samples. We show that SVM with the proposed kernel functions achieves better performance with respect to Minimum Distance, at the expense of more computational resources and the need of parameter tuning. Code and data are provided for reproducibility.Comment: Accepted for publication in the International Journal of Digital Eart

    On the use of the l(2)-norm for texture analysis of polarimetric SAR data

    Get PDF
    In this paper, the use of the l2-norm, or Span, of the scattering vectors is suggested for texture analysis of polarimetric synthetic aperture radar (SAR) data, with the benefits that we need neither an analysis of the polarimetric channels separately nor a filtering of the data to analyze the statistics. Based on the product model, the distribution of the l2-norm is studied. Closed expressions of the probability density functions under the assumptions of several texture distributions are provided. To utilize the statistical properties of the l2-norm, quantities including normalized moments and log-cumulants are derived, along with corresponding estimators and estimation variances. Results on both simulated and real SAR data show that the use of statistics based on the l2-norm brings advantages in several aspects with respect to the normalized intensity moments and matrix variate log-cumulants.Peer ReviewedPostprint (published version

    Multidimensional SAR data representation and processing based on Binary Partition Trees

    Get PDF
    English: A novel multidimensional SAR data abstraction is presented, based on Binary Partition Trees (BPT). This data abstraction is employed for different applications, as data filtering and segmentation, change detection, etc. The BPT can be contructed from a Polarimetric SAR (PolSAR) image or from a serie of coregistered acquisitions, conforming a tool that enables the systematic exploitation of PolSAR datasets simultaneously in the space and time dimensions.Castellano: na nueva abstracción de datos SAR multidimensionales es presentada, basada en Árboles de Partición Binaria (BPT). Esta abstracción de datos se emplea para distintas aplicaciones, como filtrado, segmentación, detección de cambios, etc. El BPT puede construirse a partir de una imagen SAR polarimétrica o de una serie temporal de imágenes, siendo una herramienta que permite la explotación sistemática de sets de datos PolSAR simultáneamente en espacio y tiempo.Català: Una nova abstracció de dades SAR multidimensionals és presentada, basada en Arbres de Partició Binària (BPT). Aquesta abstracció de dades s'empra per a diferents aplicacions, com filtrat, segmentació, detecció de canvis, etc. El BPT es pot construir a partir d'una imatge SAR polarimètrica o d'una sèrie temporal d'imatges, sent una eina que permet l'explotació sistemàtica de sets de dades PolSAR simultàniament en espai i temps

    Self-supervised remote sensing feature learning: Learning Paradigms, Challenges, and Future Works

    Full text link
    Deep learning has achieved great success in learning features from massive remote sensing images (RSIs). To better understand the connection between feature learning paradigms (e.g., unsupervised feature learning (USFL), supervised feature learning (SFL), and self-supervised feature learning (SSFL)), this paper analyzes and compares them from the perspective of feature learning signals, and gives a unified feature learning framework. Under this unified framework, we analyze the advantages of SSFL over the other two learning paradigms in RSIs understanding tasks and give a comprehensive review of the existing SSFL work in RS, including the pre-training dataset, self-supervised feature learning signals, and the evaluation methods. We further analyze the effect of SSFL signals and pre-training data on the learned features to provide insights for improving the RSI feature learning. Finally, we briefly discuss some open problems and possible research directions.Comment: 24 pages, 11 figures, 3 table
    corecore