7,289 research outputs found

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Simultaneous Inference of User Representations and Trust

    Full text link
    Inferring trust relations between social media users is critical for a number of applications wherein users seek credible information. The fact that available trust relations are scarce and skewed makes trust prediction a challenging task. To the best of our knowledge, this is the first work on exploring representation learning for trust prediction. We propose an approach that uses only a small amount of binary user-user trust relations to simultaneously learn user embeddings and a model to predict trust between user pairs. We empirically demonstrate that for trust prediction, our approach outperforms classifier-based approaches which use state-of-the-art representation learning methods like DeepWalk and LINE as features. We also conduct experiments which use embeddings pre-trained with DeepWalk and LINE each as an input to our model, resulting in further performance improvement. Experiments with a dataset of ∼\sim356K user pairs show that the proposed method can obtain an high F-score of 92.65%.Comment: To appear in the proceedings of ASONAM'17. Please cite that versio

    AAANE: Attention-based Adversarial Autoencoder for Multi-scale Network Embedding

    Full text link
    Network embedding represents nodes in a continuous vector space and preserves structure information from the Network. Existing methods usually adopt a "one-size-fits-all" approach when concerning multi-scale structure information, such as first- and second-order proximity of nodes, ignoring the fact that different scales play different roles in the embedding learning. In this paper, we propose an Attention-based Adversarial Autoencoder Network Embedding(AAANE) framework, which promotes the collaboration of different scales and lets them vote for robust representations. The proposed AAANE consists of two components: 1) Attention-based autoencoder effectively capture the highly non-linear network structure, which can de-emphasize irrelevant scales during training. 2) An adversarial regularization guides the autoencoder learn robust representations by matching the posterior distribution of the latent embeddings to given prior distribution. This is the first attempt to introduce attention mechanisms to multi-scale network embedding. Experimental results on real-world networks show that our learned attention parameters are different for every network and the proposed approach outperforms existing state-of-the-art approaches for network embedding.Comment: 8 pages, 5 figure
    • …
    corecore