137 research outputs found

    Unsupervised Anomaly Detection via Variational Auto-Encoder for Seasonal KPIs in Web Applications

    Full text link
    To ensure undisrupted business, large Internet companies need to closely monitor various KPIs (e.g., Page Views, number of online users, and number of orders) of its Web applications, to accurately detect anomalies and trigger timely troubleshooting/mitigation. However, anomaly detection for these seasonal KPIs with various patterns and data quality has been a great challenge, especially without labels. In this paper, we proposed Donut, an unsupervised anomaly detection algorithm based on VAE. Thanks to a few of our key techniques, Donut greatly outperforms a state-of-arts supervised ensemble approach and a baseline VAE approach, and its best F-scores range from 0.75 to 0.9 for the studied KPIs from a top global Internet company. We come up with a novel KDE interpretation of reconstruction for Donut, making it the first VAE-based anomaly detection algorithm with solid theoretical explanation.Comment: 12 pages (including references), 17 figures, submitted to WWW 2018: The 2018 Web Conference, April 23--27, 2018, Lyon, France. The contents discarded from the conference version due to the 9-page limitation are also included in this versio

    Anomaly Detection in Cloud-Native systems

    Get PDF
    In recent years, microservices have gained popularity due to their benefits such as increased maintainability and scalability of the system. The microservice architectural pattern was adopted for the development of a large scale system which is commonly deployed on public and private clouds, and therefore the aim is to ensure that it always maintains an optimal level of performance. Consequently, the system is monitored by collecting different metrics including performancerelated metrics. The first part of this thesis focuses on the creation of a dataset of realistic time series with anomalies at deterministic locations. This dataset addresses the lack of labeled data for training of supervised models and the absence of publicly available data, in fact the data are not usually shared due to privacy concerns. The second part consists of an empirical study on the detection of anomalies occurring in the different services that compose the system. Specifically, the aim is to understand if it is possible to predict the anomalies in order to perform actions before system failures or performance degradation. Consequently, eight different classification-based Machine Learning algorithms were compared by collecting accuracy, training time and testing time, to figure out which technique might be most suitable for reducing system overload. The results showed that there are strong correlations between metrics and that it is possible to predict the anomalies in the system with approximately 90% of accuracy. The most important outcome is that performance-related anomalies can be detected by monitoring a limited number of metrics collected at runtime with a short training time. Future work includes the adoption of prediction-based approaches and the development of some tools for the prediction of anomalies in cloud native environments

    Beyond Sharing: Conflict-Aware Multivariate Time Series Anomaly Detection

    Full text link
    Massive key performance indicators (KPIs) are monitored as multivariate time series data (MTS) to ensure the reliability of the software applications and service system. Accurately detecting the abnormality of MTS is very critical for subsequent fault elimination. The scarcity of anomalies and manual labeling has led to the development of various self-supervised MTS anomaly detection (AD) methods, which optimize an overall objective/loss encompassing all metrics' regression objectives/losses. However, our empirical study uncovers the prevalence of conflicts among metrics' regression objectives, causing MTS models to grapple with different losses. This critical aspect significantly impacts detection performance but has been overlooked in existing approaches. To address this problem, by mimicking the design of multi-gate mixture-of-experts (MMoE), we introduce CAD, a Conflict-aware multivariate KPI Anomaly Detection algorithm. CAD offers an exclusive structure for each metric to mitigate potential conflicts while fostering inter-metric promotions. Upon thorough investigation, we find that the poor performance of vanilla MMoE mainly comes from the input-output misalignment settings of MTS formulation and convergence issues arising from expansive tasks. To address these challenges, we propose a straightforward yet effective task-oriented metric selection and p&s (personalized and shared) gating mechanism, which establishes CAD as the first practicable multi-task learning (MTL) based MTS AD model. Evaluations on multiple public datasets reveal that CAD obtains an average F1-score of 0.943 across three public datasets, notably outperforming state-of-the-art methods. Our code is accessible at https://github.com/dawnvince/MTS_CAD.Comment: 11 pages, ESEC/FSE industry track 202

    Unsupervised Detection of Lesions in Brain MRI using constrained adversarial auto-encoders

    Full text link
    Lesion detection in brain Magnetic Resonance Images (MRI) remains a challenging task. State-of-the-art approaches are mostly based on supervised learning making use of large annotated datasets. Human beings, on the other hand, even non-experts, can detect most abnormal lesions after seeing a handful of healthy brain images. Replicating this capability of using prior information on the appearance of healthy brain structure to detect lesions can help computers achieve human level abnormality detection, specifically reducing the need for numerous labeled examples and bettering generalization of previously unseen lesions. To this end, we study detection of lesion regions in an unsupervised manner by learning data distribution of brain MRI of healthy subjects using auto-encoder based methods. We hypothesize that one of the main limitations of the current models is the lack of consistency in latent representation. We propose a simple yet effective constraint that helps mapping of an image bearing lesion close to its corresponding healthy image in the latent space. We use the Human Connectome Project dataset to learn distribution of healthy-appearing brain MRI and report improved detection, in terms of AUC, of the lesions in the BRATS challenge dataset.Comment: 9 pages, 5 figures, accepted at MIDL 201
    • …
    corecore