1,534 research outputs found

    The Missing Data Encoder: Cross-Channel Image Completion\\with Hide-And-Seek Adversarial Network

    Full text link
    Image completion is the problem of generating whole images from fragments only. It encompasses inpainting (generating a patch given its surrounding), reverse inpainting/extrapolation (generating the periphery given the central patch) as well as colorization (generating one or several channels given other ones). In this paper, we employ a deep network to perform image completion, with adversarial training as well as perceptual and completion losses, and call it the ``missing data encoder'' (MDE). We consider several configurations based on how the seed fragments are chosen. We show that training MDE for ``random extrapolation and colorization'' (MDE-REC), i.e. using random channel-independent fragments, allows a better capture of the image semantics and geometry. MDE training makes use of a novel ``hide-and-seek'' adversarial loss, where the discriminator seeks the original non-masked regions, while the generator tries to hide them. We validate our models both qualitatively and quantitatively on several datasets, showing their interest for image completion, unsupervised representation learning as well as face occlusion handling

    Self-Supervised Feature Learning by Learning to Spot Artifacts

    Full text link
    We introduce a novel self-supervised learning method based on adversarial training. Our objective is to train a discriminator network to distinguish real images from images with synthetic artifacts, and then to extract features from its intermediate layers that can be transferred to other data domains and tasks. To generate images with artifacts, we pre-train a high-capacity autoencoder and then we use a damage and repair strategy: First, we freeze the autoencoder and damage the output of the encoder by randomly dropping its entries. Second, we augment the decoder with a repair network, and train it in an adversarial manner against the discriminator. The repair network helps generate more realistic images by inpainting the dropped feature entries. To make the discriminator focus on the artifacts, we also make it predict what entries in the feature were dropped. We demonstrate experimentally that features learned by creating and spotting artifacts achieve state of the art performance in several benchmarks.Comment: CVPR 2018 (spotlight
    • …
    corecore