38 research outputs found

    Micro Phase Shifting

    Get PDF
    We consider the problem of shape recovery for real world scenes, where a variety of global illumination (inter-reflections, subsurface scattering, etc.) and illumination defocus effects are present. These effects introduce systematic and often significant errors in the recovered shape. We introduce a structured light technique called Micro Phase Shifting, which overcomes these problems. The key idea is to project sinusoidal patterns with frequencies limited to a narrow, high-frequency band. These patterns produce a set of images over which global illumination and defocus effects remain constant for each point in the scene. This enables high quality reconstructions of scenes which have traditionally been considered hard, using only a small number of images. We also derive theoretical lower bounds on the number of input images needed for phase shifting and show that Micro PS achieves the bound

    Projector-Based Augmentation

    Get PDF
    Projector-based augmentation approaches hold the potential of combining the advantages of well-establishes spatial virtual reality and spatial augmented reality. Immersive, semi-immersive and augmented visualizations can be realized in everyday environments – without the need for special projection screens and dedicated display configurations. Limitations of mobile devices, such as low resolution and small field of view, focus constrains, and ergonomic issues can be overcome in many cases by the utilization of projection technology. Thus, applications that do not require mobility can benefit from efficient spatial augmentations. Examples range from edutainment in museums (such as storytelling projections onto natural stone walls in historical buildings) to architectural visualizations (such as augmentations of complex illumination simulations or modified surface materials in real building structures). This chapter describes projector-camera methods and multi-projector techniques that aim at correcting geometric aberrations, compensating local and global radiometric effects, and improving focus properties of images projected onto everyday surfaces

    Towards Intelligent Telerobotics: Visualization and Control of Remote Robot

    Get PDF
    Human-machine cooperative or co-robotics has been recognized as the next generation of robotics. In contrast to current systems that use limited-reasoning strategies or address problems in narrow contexts, new co-robot systems will be characterized by their flexibility, resourcefulness, varied modeling or reasoning approaches, and use of real-world data in real time, demonstrating a level of intelligence and adaptability seen in humans and animals. The research I focused is in the two sub-field of co-robotics: teleoperation and telepresence. We firstly explore the ways of teleoperation using mixed reality techniques. I proposed a new type of display: hybrid-reality display (HRD) system, which utilizes commodity projection device to project captured video frame onto 3D replica of the actual target surface. It provides a direct alignment between the frame of reference for the human subject and that of the displayed image. The advantage of this approach lies in the fact that no wearing device needed for the users, providing minimal intrusiveness and accommodating users eyes during focusing. The field-of-view is also significantly increased. From a user-centered design standpoint, the HRD is motivated by teleoperation accidents, incidents, and user research in military reconnaissance etc. Teleoperation in these environments is compromised by the Keyhole Effect, which results from the limited field of view of reference. The technique contribution of the proposed HRD system is the multi-system calibration which mainly involves motion sensor, projector, cameras and robotic arm. Due to the purpose of the system, the accuracy of calibration should also be restricted within millimeter level. The followed up research of HRD is focused on high accuracy 3D reconstruction of the replica via commodity devices for better alignment of video frame. Conventional 3D scanner lacks either depth resolution or be very expensive. We proposed a structured light scanning based 3D sensing system with accuracy within 1 millimeter while robust to global illumination and surface reflection. Extensive user study prove the performance of our proposed algorithm. In order to compensate the unsynchronization between the local station and remote station due to latency introduced during data sensing and communication, 1-step-ahead predictive control algorithm is presented. The latency between human control and robot movement can be formulated as a linear equation group with a smooth coefficient ranging from 0 to 1. This predictive control algorithm can be further formulated by optimizing a cost function. We then explore the aspect of telepresence. Many hardware designs have been developed to allow a camera to be placed optically directly behind the screen. The purpose of such setups is to enable two-way video teleconferencing that maintains eye-contact. However, the image from the see-through camera usually exhibits a number of imaging artifacts such as low signal to noise ratio, incorrect color balance, and lost of details. Thus we develop a novel image enhancement framework that utilizes an auxiliary color+depth camera that is mounted on the side of the screen. By fusing the information from both cameras, we are able to significantly improve the quality of the see-through image. Experimental results have demonstrated that our fusion method compares favorably against traditional image enhancement/warping methods that uses only a single image

    Reconstruction active par projection de lumière non structurée

    Get PDF
    Cette thèse porte sur la reconstruction active de modèles 3D à l’aide d’une caméra et d’un projecteur. Les méthodes de reconstruction standards utilisent des motifs de lumière codée qui ont leurs forces et leurs faiblesses. Nous introduisons de nouveaux motifs basés sur la lumière non structurée afin de pallier aux manques des méthodes existantes. Les travaux présentés s’articulent autour de trois axes : la robustesse, la précision et finalement la comparaison des patrons de lumière non structurée aux autres méthodes. Les patrons de lumière non structurée se différencient en premier lieu par leur robustesse aux interréflexions et aux discontinuités de profondeur. Ils sont conçus de sorte à homogénéiser la quantité d’illumination indirecte causée par la projection sur des surfaces difficiles. En contrepartie, la mise en correspondance des images projetées et capturées est plus complexe qu’avec les méthodes dites structurées. Une méthode d’appariement probabiliste et efficace est proposée afin de résoudre ce problème. Un autre aspect important des reconstructions basées sur la lumière non structurée est la capacité de retrouver des correspondances sous-pixels, c’est-à-dire à un niveau de précision plus fin que le pixel. Nous présentons une méthode de génération de code de très grande longueur à partir des motifs de lumière non structurée. Ces codes ont l’avantage double de permettre l’extraction de correspondances plus précises tout en requérant l’utilisation de moins d’images. Cette contribution place notre méthode parmi les meilleures au niveau de la précision tout en garantissant une très bonne robustesse. Finalement, la dernière partie de cette thèse s’intéresse à la comparaison des méthodes existantes, en particulier sur la relation entre la quantité d’images projetées et la qualité de la reconstruction. Bien que certaines méthodes nécessitent un nombre constant d’images, d’autres, comme la nôtre, peuvent se contenter d’en utiliser moins aux dépens d’une qualité moindre. Nous proposons une méthode simple pour établir une correspondance optimale pouvant servir de référence à des fins de comparaison. Enfin, nous présentons des méthodes hybrides qui donnent de très bons résultats avec peu d’images.This thesis deals with active 3D reconstruction from camera-projector systems. Standard reconstruction methods use coded light patterns that come with their strengths and weaknesses. We introduce unstructured light patterns that feature several improvements compared to the current state of the art. The research presented revolves around three main axes : robustness, precision and comparison of existing unstructured light patterns to existing methods. Unstructured light patterns stand out first and foremost by their robustness to interreflections and depth discontinuities. They are specifically designed to homogenize the indirect lighting generated by their projection on hard to scan surfaces. The downside of these patterns is that matching projected and captured images is not straightforward anymore. A probabilistic correspondence method is formulated to solve this problem efficiently. Another important aspect of reconstruction obtained with unstructured light pat- terns is their ability to recover subpixel correspondences, that is with a precision finer than the pixel level. We present a method to produce long codes using unstructured light. These codes enable us to extract more precise correspondences while requiring less patterns. This contribution makes our method one of the most accurate - yet robust to standard challenges - method of active reconstruction in the domain. Finally, the last part of this thesis adresses the comparison of existing reconstruction methods on several aspects, but mainly on the impact of using less and less patterns on the quality of the reconstruction. While some methods need a fixed number of images, some, like ours, can accommodate fewer patterns in exchange for some quality loss. We devise a simple method to capture an optimal correspondence map that can be used as a groundtruth for comparison purposes. Last, we present several hybrid methods that perform quite well even with few images

    Projector-Based Augmentation

    Get PDF
    Projector-based augmentation approaches hold the potential of combining the advantages of well-establishes spatial virtual reality and spatial augmented reality. Immersive, semi-immersive and augmented visualizations can be realized in everyday environments – without the need for special projection screens and dedicated display configurations. Limitations of mobile devices, such as low resolution and small field of view, focus constrains, and ergonomic issues can be overcome in many cases by the utilization of projection technology. Thus, applications that do not require mobility can benefit from efficient spatial augmentations. Examples range from edutainment in museums (such as storytelling projections onto natural stone walls in historical buildings) to architectural visualizations (such as augmentations of complex illumination simulations or modified surface materials in real building structures). This chapter describes projector-camera methods and multi-projector techniques that aim at correcting geometric aberrations, compensating local and global radiometric effects, and improving focus properties of images projected onto everyday surfaces

    Le cinĂ©ma omnistĂ©rĂ©o ou l'art d'avoir des yeux tout le tour de la tĂȘte

    Full text link
    Cette thĂšse s'intĂ©resse Ă  des aspects du tournage, de la projection et de la perception du cinĂ©ma stĂ©rĂ©o panoramique, appelĂ© aussi cinĂ©ma omnistĂ©rĂ©o. Elle s'inscrit en grande partie dans le domaine de la vision par ordinateur, mais elle touche aussi aux domaines de l'infographie et de la perception visuelle humaine. Le cinĂ©ma omnistĂ©rĂ©o projette sur des Ă©crans immersifs des vidĂ©os qui fournissent de l'information sur la profondeur de la scĂšne tout autour des spectateurs. Ce type de cinĂ©ma comporte des dĂ©fis liĂ©s notamment au tournage de vidĂ©os omnistĂ©rĂ©o de scĂšnes dynamiques, Ă  la projection polarisĂ©e sur Ă©crans trĂšs rĂ©flĂ©chissants rendant difficile l'estimation de leur forme par reconstruction active, aux distorsions introduites par l'omnistĂ©rĂ©o pouvant fausser la perception des profondeurs de la scĂšne. Notre thĂšse a tentĂ© de relever ces dĂ©fis en apportant trois contributions majeures. PremiĂšrement, nous avons dĂ©veloppĂ© la toute premiĂšre mĂ©thode de crĂ©ation de vidĂ©os omnistĂ©rĂ©o par assemblage d'images pour des mouvements stochastiques et localisĂ©s. Nous avons mis au point une expĂ©rience psychophysique qui montre l'efficacitĂ© de la mĂ©thode pour des scĂšnes sans structure isolĂ©e, comme des courants d'eau. Nous proposons aussi une mĂ©thode de tournage qui ajoute Ă  ces vidĂ©os des mouvements moins contraints, comme ceux d'acteurs. DeuxiĂšmement, nous avons introduit de nouveaux motifs lumineux qui permettent Ă  une camĂ©ra et un projecteur de retrouver la forme d'objets susceptibles de produire des interrĂ©flexions. Ces motifs sont assez gĂ©nĂ©raux pour reconstruire non seulement les Ă©crans omnistĂ©rĂ©o, mais aussi des objets trĂšs complexes qui comportent des discontinuitĂ©s de profondeur du point de vue de la camĂ©ra. TroisiĂšmement, nous avons montrĂ© que les distorsions omnistĂ©rĂ©o sont nĂ©gligeables pour un spectateur placĂ© au centre d'un Ă©cran cylindrique, puisqu'elles se situent Ă  la pĂ©riphĂ©rie du champ visuel oĂč l'acuitĂ© devient moins prĂ©cise.This thesis deals with aspects of shooting, projection and perception of stereo panoramic cinema, also called omnistereo cinema. It falls largely in the field of computer vision, but it also in the areas of computer graphics and human visual perception. Omnistereo cinema uses immersive screens to project videos that provide depth information of a scene all around the spectators. Many challenges remain in omnistereo cinema, in particular shooting omnistereo videos for dynamic scenes, polarized projection on highly reflective screens making difficult the process to recover their shape by active reconstruction, and perception of depth distortions introduced by omnistereo images. Our thesis addressed these challenges by making three major contributions. First, we developed the first mosaicing method of omnistereo videos for stochastic and localized motions. We developed a psychophysical experiment that shows the effectiveness of the method for scenes without isolated structure, such as water flows. We also propose a shooting method that adds to these videos foreground motions that are not as constrained, like a moving actor. Second, we introduced new light patterns that allow a camera and a projector to recover the shape of objects likely to produce interreflections. These patterns are general enough to not only recover the shape of omnistereo screens, but also very complex objects that have depth discontinuities from the viewpoint of the camera. Third, we showed that omnistereo distortions are negligible for a viewer located at the center of a cylindrical screen, as they are in the periphery of the visual field where the human visual system becomes less accurate
    corecore