375 research outputs found

    Tracking of the Articulated Upper Body on Multi-View Stereo Image Sequences

    Get PDF

    Moment-based Kalman Filter: Nonlinear Kalman Filtering with Exact Moment Propagation

    Full text link
    This paper develops a new nonlinear filter, called Moment-based Kalman Filter (MKF), using the exact moment propagation method. Existing state estimation methods use linearization techniques or sampling points to compute approximate values of moments. However, moment propagation of probability distributions of random variables through nonlinear process and measurement models play a key role in the development of state estimation and directly affects their performance. The proposed moment propagation procedure can compute exact moments for non-Gaussian as well as non-independent Gaussian random variables. Thus, MKF can propagate exact moments of uncertain state variables up to any desired order. MKF is derivative-free and does not require tuning parameters. Moreover, MKF has the same computation time complexity as the extended or unscented Kalman filters, i.e., EKF and UKF. The experimental evaluations show that MKF is the preferred filter in comparison to EKF and UKF and outperforms both filters in non-Gaussian noise regimes.Comment: Accepted at the IEEE Conference on Robotics and Automation (ICRA), 202

    Towards an Interactive Humanoid Companion with Visual Tracking Modalities

    Get PDF
    The idea of robots acting as human companions is not a particularly new or original one. Since the notion of ā€œrobot ā€ was created, the idea of robots replacing humans in dangerous, dirty and dull activities has been inseparably tied with the fantasy of human-like robots being friends and existing side by side with humans. In 1989, Engelberger (Engelberger

    3D VISUAL TRACKING USING A SINGLE CAMERA

    Get PDF
    automated surveillance and motion based recognition. 3D tracking address the localization of moving target is the 3D space. Therefore, 3D tracking requires 3D measurement of the moving object which cannot be obtained from 2D cameras. Existing 3D tracking systems use multiple cameras for computing the depth of field and it is only used in research laboratories. Millions of surveillance cameras are installed worldwide and all of them capture 2D images. Therefore, 3D tracking cannot be performed with these cameras unless multiple cameras are installed at each location in order to compute the depth. This means installing millions of new cameras which is not a feasible solution. This work introduces a novel depth estimation method from a single 2D image using triangulation. This method computes the absolute depth of field for any object in the scene with high accuracy and short computational time. The developed method is used for performing 3D visual tracking using a single camera by providing the depth of field and ground coordinates of the moving object for each frame accurately and efficiently. Therefore, this technique can help in transforming existing 2D tracking and 2D video analytics into 3D without incurring additional costs. This makes video surveillance more efficient and increases its usage in human life. The proposed methodology uses background subtraction process for detecting a moving object in the image. Then, the newly developed depth estimation method is used for computing the 3D measurement of the moving target. Finally, the unscented Kalman filter is used for tracking the moving object given the 3D measurement obtained by the triangulation method. This system has been test and validated using several video sequences and it shows good performance in term of accuracy and computational complexity

    A bank of unscented Kalman filters for multimodal human perception with mobile service robots

    Get PDF
    A new generation of mobile service robots could be ready soon to operate in human environments if they can robustly estimate position and identity of surrounding people. Researchers in this field face a number of challenging problems, among which sensor uncertainties and real-time constraints. In this paper, we propose a novel and efficient solution for simultaneous tracking and recognition of people within the observation range of a mobile robot. Multisensor techniques for legs and face detection are fused in a robust probabilistic framework to height, clothes and face recognition algorithms. The system is based on an efficient bank of Unscented Kalman Filters that keeps a multi-hypothesis estimate of the person being tracked, including the case where the latter is unknown to the robot. Several experiments with real mobile robots are presented to validate the proposed approach. They show that our solutions can improve the robot's perception and recognition of humans, providing a useful contribution for the future application of service robotics
    • ā€¦
    corecore