27 research outputs found

    UAV Command and Control, Navigation and Surveillance: A Review of Potential 5G and Satellite Systems

    Full text link
    Drones, unmanned aerial vehicles (UAVs), or unmanned aerial systems (UAS) are expected to be an important component of 5G/beyond 5G (B5G) communications. This includes their use within cellular architectures (5G UAVs), in which they can facilitate both wireless broadcast and point-to-point transmissions, usually using small UAS (sUAS). Allowing UAS to operate within airspace along with commercial, cargo, and other piloted aircraft will likely require dedicated and protected aviation spectrum at least in the near term, while regulatory authorities adapt to their use. The command and control (C2), or control and non-payload communications (CNPC) link provides safety critical information for the control of the UAV both in terrestrial-based line of sight (LOS) conditions and in satellite communication links for so-called beyond LOS (BLOS) conditions. In this paper, we provide an overview of these CNPC links as they may be used in 5G and satellite systems by describing basic concepts and challenges. We review new entrant technologies that might be used for UAV C2 as well as for payload communication, such as millimeter wave (mmWave) systems, and also review navigation and surveillance challenges. A brief discussion of UAV-to-UAV communication and hardware issues are also provided.Comment: 10 pages, 5 figures, IEEE aerospace conferenc

    A Review of Indoor Millimeter Wave Device-based Localization and Device-free Sensing Technologies and Applications

    Full text link
    The commercial availability of low-cost millimeter wave (mmWave) communication and radar devices is starting to improve the penetration of such technologies in consumer markets, paving the way for large-scale and dense deployments in fifth-generation (5G)-and-beyond as well as 6G networks. At the same time, pervasive mmWave access will enable device localization and device-free sensing with unprecedented accuracy, especially with respect to sub-6 GHz commercial-grade devices. This paper surveys the state of the art in device-based localization and device-free sensing using mmWave communication and radar devices, with a focus on indoor deployments. We first overview key concepts about mmWave signal propagation and system design. Then, we provide a detailed account of approaches and algorithms for localization and sensing enabled by mmWaves. We consider several dimensions in our analysis, including the main objectives, techniques, and performance of each work, whether each research reached some degree of implementation, and which hardware platforms were used for this purpose. We conclude by discussing that better algorithms for consumer-grade devices, data fusion methods for dense deployments, as well as an educated application of machine learning methods are promising, relevant and timely research directions.Comment: 43 pages, 13 figures. Accepted in IEEE Communications Surveys & Tutorials (IEEE COMST

    Multi-source parameter estimation and tracking using antenna arrays

    Get PDF
    This thesis is concerned with multi-source parameter estimation and tracking using antenna arrays in wireless communications. Various multi-source parameter estimation and tracking algorithms are presented and evaluated. Firstly, a novel multiple-input multiple-output (MIMO) communication system is proposed for multi-parameter channel estimation. A manifold extender is presented for increasing the degrees of freedom (DoF). The proposed approach utilises the extended manifold vectors together with superresolution subspace type algorithms, to achieve the estimation of delay, direction of departure (DOD) and direction of arrival (DOA) of all the paths of the desired user in the presence of multiple access interference (MAI). Secondly, the MIMO system is extended to a virtual-spatiotemporal system by incorporating the temporal domain of the system towards the objective of further increasing the degrees of freedom. In this system, a multi-parameter es- timation of delay, Doppler frequency, DOD and DOA of the desired user, and a beamformer that suppresses the MAI are presented, by utilising the proposed virtual-spatiotemporal manifold extender and the superresolution subspace type algorithms. Finally, for multi-source tracking, two tracking approaches are proposed based on an arrayed Extended Kalman Filter (arrayed-EKF) and an arrayed Unscented Kalman Filter (arrayed-UKF) using two type of antenna arrays: rigid array and flexible array. If the array is rigid, the proposed approaches employ a spatiotemporal state-space model and a manifold extender to track the source parameters, while if it is flexible the array locations are also tracked simultaneously. Throughout the thesis, computer simulation studies are presented to investigate and evaluate the performance of all the proposed algorithms.Open Acces

    A Review of Radio Frequency Based Localization for Aerial and Ground Robots with 5G Future Perspectives

    Full text link
    Efficient localization plays a vital role in many modern applications of Unmanned Ground Vehicles (UGV) and Unmanned aerial vehicles (UAVs), which would contribute to improved control, safety, power economy, etc. The ubiquitous 5G NR (New Radio) cellular network will provide new opportunities for enhancing localization of UAVs and UGVs. In this paper, we review the radio frequency (RF) based approaches for localization. We review the RF features that can be utilized for localization and investigate the current methods suitable for Unmanned vehicles under two general categories: range-based and fingerprinting. The existing state-of-the-art literature on RF-based localization for both UAVs and UGVs is examined, and the envisioned 5G NR for localization enhancement, and the future research direction are explored

    Traffic-Aware Hierarchical Beam Selection for Cell-Free Massive MIMO

    Full text link
    Beam selection for joint transmission in cell-free massive multi-input multi-output systems faces the problem of extremely high training overhead and computational complexity. The traffic-aware quality of service additionally complicates the beam selection problem. To address this issue, we propose a traffic-aware hierarchical beam selection scheme performed in a dual timescale. In the long-timescale, the central processing unit collects wide beam responses from base stations (BSs) to predict the power profile in the narrow beam space with a convolutional neural network, based on which the cascaded multiple-BS beam space is carefully pruned. In the short-timescale, we introduce a centralized reinforcement learning (RL) algorithm to maximize the satisfaction rate of delay w.r.t. beam selection within multiple consecutive time slots. Moreover, we put forward three scalable distributed algorithms including hierarchical distributed Lyapunov optimization, fully distributed RL, and centralized training with decentralized execution of RL to achieve better scalability and better tradeoff between the performance and the execution signal overhead. Numerical results demonstrate that the proposed schemes significantly reduce both model training cost and beam training overhead and are easier to meet the user-specific delay requirement, compared to existing methods.Comment: 13 pages, 11 figures, part of this work has been accepted by the IEEE International Conference on Wireless Communications and Signal Processing (WCSP) 202

    A Review of Radio Frequency Based Localisation for Aerial and Ground Robots with 5G Future Perspectives

    Get PDF
    Efficient localisation plays a vital role in many modern applications of Unmanned Ground Vehicles (UGV) and Unmanned Aerial Vehicles (UAVs), which contributes to improved control, safety, power economy, etc. The ubiquitous 5G NR (New Radio) cellular network will provide new opportunities to enhance the localisation of UAVs and UGVs. In this paper, we review radio frequency (RF)-based approaches to localisation. We review the RF features that can be utilized for localisation and investigate the current methods suitable for Unmanned Vehicles under two general categories: range-based and fingerprinting. The existing state-of-the-art literature on RF-based localisation for both UAVs and UGVs is examined, and the envisioned 5G NR for localisation enhancement, and the future research direction are explored

    In-band-full-duplex integrated access and backhaul enabled next generation wireless networks

    Get PDF
    In sixth generation (6G) wireless networks, the severe traffic congestion in the microwave frequencies motivates the exploration of the large available bandwidth in the millimetre-wave (mmWave) frequencies to achieve higher network capacity and data rate. Since large-scale antenna arrays and dense base station deployment are required, the hybrid beamforming architecture and the recently proposed integrated access and backhaul (IAB) networks become potential candidates for providing cost and hardware-friendly techniques for 6G wireless networks. In addition, in-band-full-duplex (IBFD) has been recently paid much more research attention since it can make the transmission and reception occur in the same time and frequency band, which nearly doubles the communication spectral efficiency (SE) compared with state-of-the-art half-duplex (HD) systems. Since 6G will explore sensing as its new capability, future wireless networks can go far beyond communications. Motivated by this, the development of integrated sensing and communications (ISAC) systems, where radar and communication systems share the same spectrum resources and hardware, has become one of the major goals in 6G. This PhD thesis focuses on the design and analysis of IBFD-IAB wireless networks in the frequency range 2 (FR2) band (≥ 24.250 GHz) at mmWave frequencies for the potential use in 6G. Firstly, we develop a novel design for the single-cell FR2-IBFD-IAB networks with subarray-based hybrid beamforming, which can enhance the SE and coverage while reducing the latency. The radio frequency (RF) beamformers are obtained via RF codebooks given by a modified matrix-wise Linde-Buzo-Gray (LBG) algorithm. The self-interference (SI) is cancelled in three stages, where the first stage of antenna isolation is assumed to be successfully deployed. The second stage consists of the optical domain-based RF cancellation, where cancellers are connected with the RF chain pairs. The third stage is comprised of the digital cancellation via successive interference cancellation followed by minimum mean-squared error (MSE) baseband receiver. Multiuser interference in the access link is cancelled by zero-forcing at the IAB-node transmitter. The proposed codebook algorithm avoids undesirable low-rank behaviour, while the proposed staged-SI cancellation (SIC) shows satisfactory cancellation performance in the wideband IBFD scenario. However, the system performance can be affected by the hardware impairments (HWI) and RF effective channel estimation errors. Secondly, we study an FR2-IBFD-ISAC-IAB network for vehicle-to-everything communications, where the IAB-node acts as a roadside unit performing sensing and communication simultaneously (i.e., at the same time and frequency band). The SI due to the IBFD operation will be cancelled in the propagation, analogue, and digital domains; only the residual SI (RSI) is reserved for performance analysis. Considering the subarray-based hybrid beamforming structure, including HWI and RF effective SI channel estimation error, the unscented Kalman filter is used for tracking multiple vehicles in the studied scenario. The proposed system shows an enhanced SE compared with the HD system, and the tracking MSEs averaged across all vehicles of each state parameter are close to their posterior Cramér-Rao lower bounds. Thirdly, we analyse the performance of the multi-cell wideband single-hop backhaul FR2-IBFD-IAB networks by using stochastic geometry analysis. We model the wired-connected next generation NodeBs (gNBs) as the Matérn hard-core point process (MHCPP) to meet the real-world deployment requirement and reduce the cost caused by wired connection in the network. We first derive association probabilities that reflect how likely the typical user-equipment is served by a gNB or an IAB-node based on the maximum long-term averaged biased-received-desired-signal power criteria. Further, by leveraging the composite Gamma-Lognormal distribution, we derive results for the signal to interference plus noise ratio coverage, capacity with outage, and ergodic capacity of the network. In order to assess the impact of noise, we consider the sidelobe gain on inter-cell interference links and the analogue to digital converter quantization noise. Compared with the HD transmission, the designated system shows an enhanced capacity when the SIC operates successfully. We also study how the power bias and density ratio of the IAB-node to gNB, and the hard-core distance can affect system performance. Overall, this thesis aims to contribute to the research efforts of shaping the 6G wireless networks by designing and analysing the FR2-IBFD-IAB inspired networks in the FR2 band at mmWave frequencies that will be potentially used in 6G for both communication only and ISAC scenarios

    A Survey on Security and Privacy of 5G Technologies: Potential Solutions, Recent Advancements, and Future Directions

    Get PDF
    Security has become the primary concern in many telecommunications industries today as risks can have high consequences. Especially, as the core and enable technologies will be associated with 5G network, the confidential information will move at all layers in future wireless systems. Several incidents revealed that the hazard encountered by an infected wireless network, not only affects the security and privacy concerns, but also impedes the complex dynamics of the communications ecosystem. Consequently, the complexity and strength of security attacks have increased in the recent past making the detection or prevention of sabotage a global challenge. From the security and privacy perspectives, this paper presents a comprehensive detail on the core and enabling technologies, which are used to build the 5G security model; network softwarization security, PHY (Physical) layer security and 5G privacy concerns, among others. Additionally, the paper includes discussion on security monitoring and management of 5G networks. This paper also evaluates the related security measures and standards of core 5G technologies by resorting to different standardization bodies and provide a brief overview of 5G standardization security forces. Furthermore, the key projects of international significance, in line with the security concerns of 5G and beyond are also presented. Finally, a future directions and open challenges section has included to encourage future research.European CommissionNational Research Tomsk Polytechnic UniversityUpdate citation details during checkdate report - A
    corecore