2 research outputs found

    Decoding of Decode and Forward (DF) Relay Protocol using Min-Sum Based Low Density Parity Check (LDPC) System

    Get PDF
    Decoding high complexity is a major issue to design a decode and forward (DF) relay protocol. Thus, the establishment of low complexity decoding system would beneficial to assist decode and forward relay protocol. This paper reviews existing methods for the min-sum based LDPC decoding system as the low complexity decoding system. Reference lists of chosen articles were further reviewed for associated publications. This paper introduces comprehensive system model representing and describing the methods developed for LDPC based for DF relay protocol. It is consists of a number of components: (1) encoder and modulation at the source node, (2) demodulation, decoding, encoding and modulation at relay node, and (3) demodulation and decoding at the destination node. This paper also proposes a new taxonomy for min-sum based LDPC decoding techniques, highlights some of the most important components such as data used, result performances and profiles the Variable and Check Node (VCN) operation methods that have the potential to be used in DF relay protocol. Min-sum based LDPC decoding methods have the potential to provide an objective measure the best tradeoff between low complexities decoding process and the decoding error performance, and emerge as a cost-effective solution for practical application

    Metric and Representation Learning

    Full text link
    All data has some inherent mathematical structure. I am interested in understanding the intrinsic geometric and probabilistic structure of data to design effective algorithms and tools that can be applied to machine learning and across all branches of science. The focus of this thesis is to increase the effectiveness of machine learning techniques by developing a mathematical and algorithmic framework using which, given any type of data, we can learn an optimal representation. Representation learning is done for many reasons. It could be done to fix the corruption given corrupted data or to learn a low dimensional or simpler representation, given high dimensional data or a very complex representation of the data. It could also be that the current representation of the data does not capture the important geometric features of the data. One of the many challenges in representation learning is determining ways to judge the quality of the representation learned. In many cases, the consensus is that if d is the natural metric on the representation, then this metric should provide meaningful information about the data. Many examples of this can be seen in areas such as metric learning, manifold learning, and graph embedding. However, most algorithms that solve these problems learn a representation in a metric space first and then extract a metric. A large part of my research is exploring what happens if the order is switched, that is, learn the appropriate metric first and the embedding later. The philosophy behind this approach is that understanding the inherent geometry of the data is the most crucial part of representation learning. Often, studying the properties of the appropriate metric on the input data sets indicates the type of space, we should be seeking for the representation. Hence giving us more robust representations. Optimizing for the appropriate metric can also help overcome issues such as missing and noisy data. My projects fall into three different areas of representation learning. 1) Geometric and probabilistic analysis of representation learning methods. 2) Developing methods to learn optimal metrics on large datasets. 3) Applications. For the category of geometric and probabilistic analysis of representation learning methods, we have three projects. First, designing optimal training data for denoising autoencoders. Second, formulating a new optimal transport problem and understanding the geometric structure. Third, analyzing the robustness to perturbations of the solutions obtained from the classical multidimensional scaling algorithm versus that of the true solutions to the multidimensional scaling problem. For learning optimal metric, we are given a dissimilarity matrix hatDhat{D}, some function ff and some a subset SS of the space of all metrics and we want to find DinSD in S that minimizes f(D,hatD)f(D,hat{D}). In this thesis, we consider the version of the problem when SS is the space of metrics defined on a fixed graph. That is, given a graph GG, we let SS, be the space of all metrics defined via GG. For this SS, we consider the sparse objective function as well as convex objective functions. We also looked at the problem where we want to learn a tree. We also show how the ideas behind learning the optimal metric can be applied to dimensionality reduction in the presence of missing data. Finally, we look at an application to real world data. Specifically trying to reconstruct ancient Greek text.PHDApplied and Interdisciplinary MathematicsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/169738/1/rsonthal_1.pd
    corecore