5,861 research outputs found

    Parallel-Machine Scheduling Problems with Past-Sequence-Dependent Delivery Times and Aging Maintenance

    Get PDF
    We consider parallel-machine scheduling problems with past-sequence-dependent (psd) delivery times and aging maintenance. The delivery time is proportional to the waiting time in the system. Each machine has an aging maintenance activity. We develop polynomial algorithms to three versions of the problem to minimize the total absolute deviation of job completion times, the total load, and the total completion time

    A multi objective volleyball premier league algorithm for green scheduling identical parallel machines with splitting jobs

    Get PDF
    Parallel machine scheduling is one of the most common studied problems in recent years, however, this classic optimization problem has to achieve two conflicting objectives, i.e. minimizing the total tardiness and minimizing the total wastes, if the scheduling is done in the context of plastic injection industry where jobs are splitting and molds are important constraints. This paper proposes a mathematical model for scheduling parallel machines with splitting jobs and resource constraints. Two minimization objectives - the total tardiness and the number of waste - are considered, simultaneously. The obtained model is a bi-objective integer linear programming model that is shown to be of NP-hard class optimization problems. In this paper, a novel Multi-Objective Volleyball Premier League (MOVPL) algorithm is presented for solving the aforementioned problem. This algorithm uses the crowding distance concept used in NSGA-II as an extension of the Volleyball Premier League (VPL) that we recently introduced. Furthermore, the results are compared with six multi-objective metaheuristic algorithms of MOPSO, NSGA-II, MOGWO, MOALO, MOEA/D, and SPEA2. Using five standard metrics and ten test problems, the performance of the Pareto-based algorithms was investigated. The results demonstrate that in general, the proposed algorithm has supremacy than the other four algorithms

    High-Performance Computing for Scheduling Decision Support: A Parallel Depth-First Search Heuristic

    Get PDF
    Many academic disciplines - including information systems, computer science, and operations management - face scheduling problems as important decision making tasks. Since many scheduling problems are NP-hard in the strong sense, there is a need for developing solution heuristics. For scheduling problems with setup times on unrelated parallel machines, there is limited research on solution methods and to the best of our knowledge, parallel computer architectures have not yet been taken advantage of. We address this gap by proposing and implementing a new solution heuristic and by testing different parallelization strategies. In our computational experiments, we show that our heuristic calculates near-optimal solutions even for large instances and that computing time can be reduced substantially by our parallelization approach

    Multicriteria hybrid flow shop scheduling problem: literature review, analysis, and future research

    Get PDF
    This research focuses on the Hybrid Flow Shop production scheduling problem, which is one of the most difficult problems to solve. The literature points to several studies that focus the Hybrid Flow Shop scheduling problem with monocriteria functions. Despite of the fact that, many real world problems involve several objective functions, they can often compete and conflict, leading researchers to concentrate direct their efforts on the development of methods that take consider this variant into consideration. The goal of the study is to review and analyze the methods in order to solve the Hybrid Flow Shop production scheduling problem with multicriteria functions in the literature. The analyses were performed using several papers that have been published over the years, also the parallel machines types, the approach used to develop solution methods, the type of method develop, the objective function, the performance criterion adopted, and the additional constraints considered. The results of the reviewing and analysis of 46 papers showed opportunities for future researchon this topic, including the following: (i) use uniform and dedicated parallel machines, (ii) use exact and metaheuristics approaches, (iv) develop lower and uppers bounds, relations of dominance and different search strategiesto improve the computational time of the exact methods,  (v) develop  other types of metaheuristic, (vi) work with anticipatory setups, and (vii) add constraints faced by the production systems itself

    A statistical comparison of metaheuristics for unrelated parallel machine scheduling problems with setup times

    Get PDF
    Manufacturing scheduling aims to optimize one or more performance measures by allocating a set of resources to a set of jobs or tasks over a given period of time. It is an area that considers a very important decision-making process for manufacturing and production systems. In this paper, the unrelated parallel machine scheduling problem with machine-dependent and job-sequence-dependent setup times is addressed. This problem involves the scheduling of tasks on unrelated machines with setup times in order to minimize the makespan. The genetic algorithm is used to solve small and large instances of this problem when processing and setup times are balanced (Balanced problems), when processing times are dominant (Dominant P problems), and when setup times are dominant (Dominant S problems). For small instances, most of the values achieved the optimal makespan value, and, when compared to the metaheuristic ant colony optimization (ACOII) algorithm referred to in the literature, it was found that there were no significant differences between the two methods. However, in terms of large instances, there were significant differences between the optimal makespan obtained by the two methods, revealing overall better performance by the genetic algorithm for Dominant S and Dominant P problems.FCT—Fundação para a Ciência e Tecnologia through the R&D Units Project Scope UIDB/00319/2020 and EXPL/EME-SIS/1224/2021 and PhD grant UI/BD/150936/2021

    Production Scheduling Requirements to Smart Manufacturing

    Get PDF
    The production scheduling has attracted a lot of researchers for many years, however most of the approaches are not targeted to deal with real manufacturing environments, and those that are, are very particular for the case study. It is crucial to consider important features related with the factories, such as products and machines characteristics and unexpected disturbances, but also information such as when the parts arrive to the factory and when should be delivered. So, the purpose of this paper is to identify some important characteristics that have been considered independently in a lot of studies and that should be considered together to develop a generic scheduling framework to be used in a real manufacturing environment.authorsversionpublishe

    Energy-Efficient Flexible Flow Shop Scheduling With Due Date and Total Flow Time

    Get PDF
    One of the most significant optimization issues facing a manufacturing company is the flexible flow shop scheduling problem (FFSS). However, FFSS with uncertainty and energy-related elements has received little investigation. Additionally, in order to reduce overall waiting times and earliness/tardiness issues, the topic of flexible flow shop scheduling with shared due dates is researched. Using transmission line loadings and bus voltage magnitude variations, an unique severity function is formulated in this research. Optimize total energy consumption, total agreement index, and make span all at once. Many different meta-heuristics have been presented in the past to find near-optimal answers in an acceptable amount of computation time. To explore the potential for energy saving in shop floor management, a multi-level optimization technique for flexible flow shop scheduling and integrates power models for individual machines with cutting parameters optimisation into energy-efficient scheduling issues is proposed. However, it can be difficult and time-consuming to fine-tune algorithm-specific parameters for solving FFSP

    Preserving the Quality of Architectural Tactics in Source Code

    Get PDF
    In any complex software system, strong interdependencies exist between requirements and software architecture. Requirements drive architectural choices while also being constrained by the existing architecture and by what is economically feasible. This makes it advisable to concurrently specify the requirements, to devise and compare alternative architectural design solutions, and ultimately to make a series of design decisions in order to satisfy each of the quality concerns. Unfortunately, anecdotal evidence has shown that architectural knowledge tends to be tacit in nature, stored in the heads of people, and lost over time. Therefore, developers often lack comprehensive knowledge of underlying architectural design decisions and inadvertently degrade the quality of the architecture while performing maintenance activities. In practice, this problem can be addressed through preserving the relationships between the requirements, architectural design decisions and their implementations in the source code, and then using this information to keep developers aware of critical architectural aspects of the code. This dissertation presents a novel approach that utilizes machine learning techniques to recover and preserve the relationships between architecturally significant requirements, architectural decisions and their realizations in the implemented code. Our approach for recovering architectural decisions includes the two primary stages of training and classification. In the first stage, the classifier is trained using code snippets of different architectural decisions collected from various software systems. During this phase, the classifier learns the terms that developers typically use to implement each architectural decision. These ``indicator terms\u27\u27 represent method names, variable names, comments, or the development APIs that developers inevitably use to implement various architectural decisions. A probabilistic weight is then computed for each potential indicator term with respect to each type of architectural decision. The weight estimates how strongly an indicator term represents a specific architectural tactics/decisions. For example, a term such as \emph{pulse} is highly representative of the heartbeat tactic but occurs infrequently in the authentication. After learning the indicator terms, the classifier can compute the likelihood that any given source file implements a specific architectural decision. The classifier was evaluated through several different experiments including classical cross-validation over code snippets of 50 open source projects and on the entire source code of a large scale software system. Results showed that classifier can reliably recognize a wide range of architectural decisions. The technique introduced in this dissertation is used to develop the Archie tool suite. Archie is a plug-in for Eclipse and is designed to detect wide range of architectural design decisions in the code and to protect them from potential degradation during maintenance activities. It has several features for performing change impact analysis of architectural concerns at both the code and design level and proactively keep developers informed of underlying architectural decisions during maintenance activities. Archie is at the stage of technology transfer at the US Department of Homeland Security where it is purely used to detect and monitor security choices. Furthermore, this outcome is integrated into the Department of Homeland Security\u27s Software Assurance Market Place (SWAMP) to advance research and development of secure software systems

    Optimization Models and Approximate Algorithms for the Aerial Refueling Scheduling and Rescheduling Problems

    Get PDF
    The Aerial Refueling Scheduling Problem (ARSP) can be defined as determining the refueling completion times for fighter aircrafts (jobs) on multiple tankers (machines) to minimize the total weighted tardiness. ARSP can be modeled as a parallel machine scheduling with release times and due date-to-deadline window. ARSP assumes that the jobs have different release times, due dates, and due date-to-deadline windows between the refueling due date and a deadline to return without refueling. The Aerial Refueling Rescheduling Problem (ARRP), on the other hand, can be defined as updating the existing AR schedule after being disrupted by job related events including the arrival of new aircrafts, departure of an existing aircrafts, and changes in aircraft priorities. ARRP is formulated as a multiobjective optimization problem by minimizing the total weighted tardiness (schedule quality) and schedule instability. Both ARSP and ARRP are formulated as mixed integer programming models. The objective function in ARSP is a piecewise tardiness cost that takes into account due date-to-deadline windows and job priorities. Since ARSP is NP-hard, four approximate algorithms are proposed to obtain solutions in reasonable computational times, namely (1) apparent piecewise tardiness cost with release time rule (APTCR), (2) simulated annealing starting from random solution (SArandom ), (3) SA improving the initial solution constructed by APTCR (SAAPTCR), and (4) Metaheuristic for Randomized Priority Search (MetaRaPS). Additionally, five regeneration and partial repair algorithms (MetaRE, BestINSERT, SEPRE, LSHIFT, and SHUFFLE) were developed for ARRP to update instantly the current schedule at the disruption time. The proposed heuristic algorithms are tested in terms of solution quality and CPU time through computational experiments with randomly generated data to represent AR operations and disruptions. Effectiveness of the scheduling and rescheduling algorithms are compared to optimal solutions for problems with up to 12 jobs and to each other for larger problems with up to 60 jobs. The results show that, APTCR is more likely to outperform SArandom especially when the problem size increases, although it has significantly worse performance than SA in terms of deviation from optimal solution for small size problems. Moreover CPU time performance of APTCR is significantly better than SA in both cases. MetaRaPS is more likely to outperform SAAPTCR in terms of average error from optimal solutions for both small and large size problems. Results for small size problems show that MetaRaPS algorithm is more robust compared to SAAPTCR. However, CPU time performance of SA is significantly better than MetaRaPS in both cases. ARRP experiments were conducted with various values of objective weighting factor for extended analysis. In the job arrival case, MetaRE and BestINSERT have significantly performed better than SEPRE in terms of average relative error for small size problems. In the case of job priority disruption, there is no significant difference between MetaRE, BestINSERT, and SHUFFLE algorithms. MetaRE has significantly performed better than LSHIFT to repair job departure disruptions and significantly superior to the BestINSERT algorithm in terms of both relative error and computational time for large size problems
    corecore