248 research outputs found

    On the Robustness of Face Recognition Algorithms Against Attacks and Bias

    Full text link
    Face recognition algorithms have demonstrated very high recognition performance, suggesting suitability for real world applications. Despite the enhanced accuracies, robustness of these algorithms against attacks and bias has been challenged. This paper summarizes different ways in which the robustness of a face recognition algorithm is challenged, which can severely affect its intended working. Different types of attacks such as physical presentation attacks, disguise/makeup, digital adversarial attacks, and morphing/tampering using GANs have been discussed. We also present a discussion on the effect of bias on face recognition models and showcase that factors such as age and gender variations affect the performance of modern algorithms. The paper also presents the potential reasons for these challenges and some of the future research directions for increasing the robustness of face recognition models.Comment: Accepted in Senior Member Track, AAAI202

    Simultaneous Adversarial Attacks On Multiple Face Recognition System Components

    Full text link
    In this work, we investigate the potential threat of adversarial examples to the security of face recognition systems. Although previous research has explored the adversarial risk to individual components of FRSs, our study presents an initial exploration of an adversary simultaneously fooling multiple components: the face detector and feature extractor in an FRS pipeline. We propose three multi-objective attacks on FRSs and demonstrate their effectiveness through a preliminary experimental analysis on a target system. Our attacks achieved up to 100% Attack Success Rates against both the face detector and feature extractor and were able to manipulate the face detection probability by up to 50% depending on the adversarial objective. This research identifies and examines novel attack vectors against FRSs and suggests possible ways to augment the robustness by leveraging the attack vector's knowledge during training of an FRS's components

    Data Fine-tuning

    Full text link
    In real-world applications, commercial off-the-shelf systems are utilized for performing automated facial analysis including face recognition, emotion recognition, and attribute prediction. However, a majority of these commercial systems act as black boxes due to the inaccessibility of the model parameters which makes it challenging to fine-tune the models for specific applications. Stimulated by the advances in adversarial perturbations, this research proposes the concept of Data Fine-tuning to improve the classification accuracy of a given model without changing the parameters of the model. This is accomplished by modeling it as data (image) perturbation problem. A small amount of "noise" is added to the input with the objective of minimizing the classification loss without affecting the (visual) appearance. Experiments performed on three publicly available datasets LFW, CelebA, and MUCT, demonstrate the effectiveness of the proposed concept.Comment: Accepted in AAAI 201
    • …
    corecore