704 research outputs found

    Unobtrusive Health Monitoring in Private Spaces: The Smart Home

    Get PDF
    With the advances in sensor technology, big data, and artificial intelligence, unobtrusive in-home health monitoring has been a research focus for decades. Following up our research on smart vehicles, within the framework of unobtrusive health monitoring in private spaces, this work attempts to provide a guide to current sensor technology for unobtrusive in-home monitoring by a literature review of the state of the art and to answer, in particular, the questions: (1) What types of sensors can be used for unobtrusive in-home health data acquisition? (2) Where should the sensors be placed? (3) What data can be monitored in a smart home? (4) How can the obtained data support the monitoring functions? We conducted a retrospective literature review and summarized the state-of-the-art research on leveraging sensor technology for unobtrusive in-home health monitoring. For structured analysis, we developed a four-category terminology (location, unobtrusive sensor, data, and monitoring functions). We acquired 912 unique articles from four relevant databases (ACM Digital Lib, IEEE Xplore, PubMed, and Scopus) and screened them for relevance, resulting in n=55 papers analyzed in a structured manner using the terminology. The results delivered 25 types of sensors (motion sensor, contact sensor, pressure sensor, electrical current sensor, etc.) that can be deployed within rooms, static facilities, or electric appliances in an ambient way. While behavioral data (e.g., presence (n=38), time spent on activities (n=18)) can be acquired effortlessly, physiological parameters (e.g., heart rate, respiratory rate) are measurable on a limited scale (n=5). Behavioral data contribute to functional monitoring. Emergency monitoring can be built up on behavioral and environmental data. Acquired physiological parameters allow reasonable monitoring of physiological functions to a limited extent. Environmental data and behavioral data also detect safety and security abnormalities. Social interaction monitoring relies mainly on direct monitoring of tools of communication (smartphone; computer). In summary, convincing proof of a clear effect of these monitoring functions on clinical outcome with a large sample size and long-term monitoring is still lacking

    Development of an anomaly alert system triggered by unusual behaviors at home

    Get PDF
    In many countries, the number of elderly people has grown due to the increase in the life expectancy of the population, many of whom currently live alone and are prone to having accidents that they cannot report, especially if they are immobilized. For this reason, we have developed a non-intrusive IoT device, which, through multiple integrated sensors, collects information on habitual user behavior patterns and uses it to generate unusual behavior rules. These rules are used by our SecurHome system to send alert messages to the dependent person's family members or caregivers if their behavior changes abruptly over the course of their daily life. This document describes in detail the design and development of the SecurHome system.SecurHome is a multidisciplinary research project on ageing in the framework of the International Centre on Ageing (CENIE). It is a project evaluated by the Spanish State Agency for Research and co-financed by the European Regional Development Fund in the framework of the Interreg V-A Spain–Portugal Cooperation Programme (POCTEP) 2014–2020

    A smart home environment to support safety and risk monitoring for the elderly living independently

    Get PDF
    The elderly prefer to live independently despite vulnerability to age-related challenges. Constant monitoring is required in cases where the elderly are living alone. The home environment can be a dangerous environment for the elderly living independently due to adverse events that can occur at any time. The potential risks for the elderly living independently can be categorised as injury in the home, home environmental risks and inactivity due to unconsciousness. The main research objective was to develop a Smart Home Environment (SHE) that can support risk and safety monitoring for the elderly living independently. An unobtrusive and low cost SHE solution that uses a Raspberry Pi 3 model B, a Microsoft Kinect Sensor and an Aeotec 4-in-1 Multisensor was implemented. The Aeotec Multisensor was used to measure temperature, motion, lighting, and humidity in the home. Data from the multisensor was collected using OpenHAB as the Smart Home Operating System. The information was processed using the Raspberry Pi 3 and push notifications were sent when risk situations were detected. An experimental evaluation was conducted to determine the accuracy with which the prototype SHE detected abnormal events. Evaluation scripts were each evaluated five times. The results show that the prototype has an average accuracy, sensitivity and specificity of 94%, 96.92% and 88.93% respectively. The sensitivity shows that the chance of the prototype missing a risk situation is 3.08%, and the specificity shows that the chance of incorrectly classifying a non-risk situation is 11.07%. The prototype does not require any interaction on the part of the elderly. Relatives and caregivers can remotely monitor the elderly person living independently via the mobile application or a web portal. The total cost of the equipment used was below R3000

    A Behaviour Monitoring System (BMS) for Ambient Assisted Living

    Get PDF
    Unusual changes in the regular daily mobility routine of an elderly person at home can be an indicator or early symptom of developing health problems. Sensor technology can be utilised to complement the traditional healthcare systems to gain a more detailed view of the daily mobility of a person at home when performing everyday tasks. We hypothesise that data collected from low-cost sensors such as presence and occupancy sensors can be analysed to provide insights on the daily mobility habits of the elderly living alone at home and to detect routine changes. We validate this hypothesis by designing a system that automatically learns the daily room-to-room transitions and permanence habits in each room at each time of the day and generates alarm notifications when deviations are detected. We present an algorithm to process the sensors' data streams and compute sensor-driven features that describe the daily mobility routine of the elderly as part of the developed Behaviour Monitoring System (BMS). We are able to achieve low detection delay with confirmation time that is high enough to convey the detection of a set of common abnormal situations. We illustrate and evaluate BMS with synthetic data, generated by a developed data generator that was designed to mimic different user's mobility profiles at home, and also with a real-life dataset collected from prior research work. Results indicate BMS detects several mobility changes that can be symptoms of common health problems. The proposed system is a useful approach for learning the mobility habits at the home environment, with the potential to detect behaviour changes that occur due to health problems, and therefore, motivating progress toward behaviour monitoring and elder's care.This work has been supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT—Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2013.info:eu-repo/semantics/publishedVersio

    Distributed Computing and Monitoring Technologies for Older Patients

    Get PDF
    This book summarizes various approaches for the automatic detection of health threats to older patients at home living alone. The text begins by briefly describing those who would most benefit from healthcare supervision. The book then summarizes possible scenarios for monitoring an older patient at home, deriving the common functional requirements for monitoring technology. Next, the work identifies the state of the art of technological monitoring approaches that are practically applicable to geriatric patients. A survey is presented on a range of such interdisciplinary fields as smart homes, telemonitoring, ambient intelligence, ambient assisted living, gerontechnology, and aging-in-place technology. The book discusses relevant experimental studies, highlighting the application of sensor fusion, signal processing and machine learning techniques. Finally, the text discusses future challenges, offering a number of suggestions for further research directions

    Behavioural modelling for ambient assisted living

    Get PDF
    Tese de doutoramento - MAP-i (University of Minho, Aveiro, and Porto)A mudança incomum na rotina diária ao nível da mobilidade de um idoso em sua casa, pode ser um sinal ou sintoma precoce para a possibilidade de vir a desenvolver um problema de saúde. O recurso a diferentes sensores pode ser um meio para complementar os sistemas de cuidados de saúde tradicionais, de forma a obter uma visão mais detalhada da mobilidade diária do individuo em sua casa, enquanto realiza as suas tarefas diárias. Acreditamos, que os dados recolhidos a partir de sensores de baixo custo, como sensores de presença e ocupação, podem ser utilizados para fornecer evidências sobre os hábitos diários de mobilidade dos idosos que vivem sozinhos em casa e detetar desta forma mudanças nas suas rotinas. Neste trabalho, validamos esta hipótese, desenvolvendo um sistema que aprende automaticamente as transições diárias entre divisões da habitação e hábitos de estadia em cada uma dessas divisões em cada momento do dia e consequentemente gera alarmes sempre que os desvios são detetados. Apresentamos neste trabalho um algoritmo que processa os fluxos de dados dos diferentes sensores e identifica características que descrevem a rotina diária de mobilidade de um idoso que vive sozinho em casa. Para isso foi definido um conjunto de dimensões baseadas nos dados extraídos dos sensores, como parte do nosso Behaviour Monitoring System (BMS). Fomos capazes de detetar com um atraso mínimo os comportamentos incomuns e ao mesmo tempo, durações de confirmação da deteção elevadas, de tal modo suficientes para um conjunto comum de situações anormais. Apresentamos e avaliamos o BMS com dados sintetizados, produzidos por um gerador de dados desenvolvido para este efeito e projetado para simular diferentes perfis de mobilidade de indivíduos em casa, e também com dados reais obtidos de trabalhos de investigação anteriores. Os resultados indicam que o BMS deteta várias mudanças de mobilidade que podem ser sintomas para problemas de saúde comuns. O sistema proposto é uma abordagem útil para a aprendizagem dos hábitos de mobilidade em ambientes domésticos, com potencial para detetar alterações comportamentais que ocorrem devido a problemas de saúde, e assim encorajar a monitorização dos comportamentos e dos cuidados de saúde dos idosos.Unusual changes in the regular daily mobility routine of an elderly at home can be an indicator or early symptoms for developing a health problem. Sensor technology can be utilised to complement the traditional healthcare systems to gain a more detailed view of the daily mobility of a person at home when performing everyday tasks. We hypothesise that data collected from low-cost sensors such as presence and occupancy sensors can be analysed to provide insights on the daily mobility habits of the elderly living alone at home and to detect routine changes. We validate this hypothesis by designing a system that automatically learns the daily room-to-room transitions and stays habits in each room at each time of the day and generates alarm notifications when deviations are detected. We present an algorithm to process the sensor data streams and compute features that describe the daily mobility routine of an elderly living alone at home. This was done by defining a set of sensor-driven dimensions extracted from the sensor data as part of our Behaviour Monitoring System (BMS). We are able to achieve low detection delay with confirmation time that is high enough to convey the detection of a set of common abnormal situations. We illustrate and evaluate BMS with synthetic data, generated by a developed data generator that was designed to mimic different users’ mobility profiles at home, and also with real-life dataset collected from prior research work. Results indicate BMS detects several mobility changes that can be symptoms of common health problems. The proposed system is a useful approach for learning the mobility habits at home environments, with the potential to detect behaviour changes that occur due to health problems, and therefore, motivating progress toward behaviour monitoring and elder’s care

    Toward Sensor-Based Early Diagnosis of Cognitive Impairment of Elderly Adults in Smart-Home Environments using Poisson Process Models

    Get PDF
    Emerging sensor-based assessment in combination with machine learning methodologies provide the potential to revolutionize current practices of (early) diagnosis of dementia. The goal of this research is to detect cognitive impairment in elderly adults using sensor-based measures. Longitudinal time-series data of sensor signals are analyzed with advanced computational models and supervised machine learning algorithms to identify individuals with cognitive impairment. This research further designs novel computational models using Poisson Processes that can model subtle temporal changes in sensor-based measurements, therefore have the potential to provide more reliable descriptors of cognitive impairments compared to aggregate time-series measures. Our results indicate that the proposed approach can effectively distinguish between dementia and MCI based on the sensor features yielded by the Poisson Process. Sensor-based assessment that relies on the non-homogeneous Poisson Process is further found to be effective in differentiating between adults with dementia and healthy adults, and depicts better performance compared to expert-based assessment. Findings from this research have the potential to help detect the early onset of cognitive impairment for elderly adults, and demonstrate the ability of advanced computational models and machine learning techniques to predict one’s cognitive health, thus, contributing toward advancing aging-in-place

    A protected discharge facility for the elderly: design and validation of a working proof-of-concept

    Get PDF
    With the increasing share of elderly population worldwide, the need for assistive technologies to support clinicians in monitoring their health conditions is becoming more and more relevant. As a quantitative tool, geriatricians recently proposed the notion of frail elderly, which rapidly became a key element of clinical practices for the estimation of well-being in aging population. The evaluation of frailty is commonly based on self-reported outcomes and occasional physicians evaluations, and may therefore contain biased results. Another important aspect in the elderly population is hospitalization as a risk factor for patient\u2019s well being and public costs. Hospitalization is the main cause of functional decline, especially in older adults. The reduction of hospitalization time may allow an improvement of elderly health conditions and a reduction of hospital costs. Furthermore, a gradual transition from a hospital environment to a home-like one, can contribute to the weaning of the patient from a condition of hospitalization to a condition of discharge to his home. The advent of new technologies allows for the design and implementation of smart environments to monitor elderly health status and activities, fulfilling all the requirements of health and safety of the patients. From these starting points, in this thesis I present data-driven methodologies to automatically evaluate one of the main aspects contributing to the frailty estimation, i.e., the motility of the subject. First I will describe a model of protected discharge facility, realized in collaboration and within the E.O. Ospedali Galliera (Genoa, Italy), where patients can be monitored by a system of sensors while physicians and nurses have the opportunity to monitor them remotely. This sensorised facility is being developed to assist elderly users after they have been dismissed from the hospital and before they are ready to go back home, with the perspective of coaching them towards a healthy lifestyle. The facility is equipped with a variety of sensors (vision, depth, ambient and wearable sensors and medical devices), but in my thesis I primarily focus on RGB-D sensors and present visual computing tools to automatically estimate motility features. I provide an extensive system assessment I carried out onthree different experimental sessions with help of young as well as healthy aging volunteers. The results I present are in agreement with the assessment manually performed by physicians, showing the potential capability of my approach to complement current protocols of evaluation

    Central monitoring system for ambient assisted living

    Get PDF
    Smart homes for aged care enable the elderly to stay in their own homes longer. By means of various types of ambient and wearable sensors information is gathered on people living in smart homes for aged care. This information is then processed to determine the activities of daily living (ADL) and provide vital information to carers. Many examples of smart homes for aged care can be found in literature, however, little or no evidence can be found with respect to interoperability of various sensors and devices along with associated functions. One key element with respect to interoperability is the central monitoring system in a smart home. This thesis analyses and presents key functions and requirements of a central monitoring system. The outcomes of this thesis may benefit developers of smart homes for aged care
    corecore