511 research outputs found

    Fault tolerant control of a quadrotor using L-1 adaptive control

    Get PDF
    Purpose – The growing use of small unmanned rotorcraft in civilian applications means that safe operation is increasingly important. The purpose of this paper is to investigate the fault tolerant properties to faults in the actuators of an L1 adaptive controller for a quadrotor vehicle. Design/methodology/approach – L1 adaptive control provides fast adaptation along with decoupling between adaptation and robustness. This makes the approach a suitable candidate for fault tolerant control of quadrotor and other multirotor vehicles. In the paper, the design of an L1 adaptive controller is presented. The controller is compared to a fixed-gain LQR controller. Findings – The L1 adaptive controller is shown to have improved performance when subject to actuator faults, and a higher range of actuator fault tolerance. Research limitations/implications – The control scheme is tested in simulation of a simple model that ignores aerodynamic and gyroscopic effects. Hence for further work, testing with a more complete model is recommended followed by implementation on an actual platform and flight test. The effect of sensor noise should also be considered along with investigation into the influence of wind disturbances and tolerance to sensor failures. Furthermore, quadrotors cannot tolerate total failure of a rotor without loss of control of one of the degrees of freedom, this aspect requires further investigation. Practical implications – Applying the L1 adaptive controller to a hexrotor or octorotor would increase the reliability of such vehicles without recourse to methods that require fault detection schemes and control reallocation as well as providing tolerance to a total loss of a rotor. Social implications – In order for quadrotors and other similar unmanned air vehicles to undertake many proposed roles, a high level of safety is required. Hence the controllers should be fault tolerant. Originality/value – Fault tolerance to partial actuator/effector faults is demonstrated using an L1 adaptive controller

    Quadrotor Accelerometer and Gyroscope Sensor Fault Diagnosis Using Nonlinear Adaptive Estimation Methods

    Get PDF
    This paper presents the design, analysis, and real-time experimental evaluation results of a nonlinear sensor fault diagnosis scheme for quadrotor unmanned air vehicles (UAV). The objective is to detect, isolate, and estimate sensor bias faults in accelerometer and gyroscope measurements. Based on the quadrotor dynamics and sensor models under consideration, the effects of sensor faults are represented as virtual actuator faults in the quadrotor state equation. Two nonlinear diagnostic estimators are designed to provide structured residuals for fault detection and isolation. Additionally, after the fault is detected and isolated, a nonlinear adaptive estimation scheme is employed for estimating the unknown fault magnitude. The proposed fault diagnosis scheme is capable of handling simultaneous faults in the accelerometer and gyroscope measurements. The effectiveness of the fault diagnosis method is demonstrated using an indoor real-time quadrotor UAV test environment

    Flying Qualities Built-In-Test For Unmanned Aerial Systems

    Get PDF
    This paper presents a flying qualities built-in-test for UAS application with the scope limited to the longitudinal axis. A doublet input waveform excites the AV and both α and q are used by EUDKF to estimate the A and B matrices which are short period approximations of the system. ζ, ω, GM, PM, observability, and controllability are calculated to determine flying qualities with the results displayed to the AVO in a color-coded, easy to interpret display. While SID algorithms have been flying in vehicles with adaptive control schemes, vehicles with other schemes (such as classical feedback) lack this built-in self assessment tool. In addition, adaptive control SID results are not analyzed and displayed but instead used internally. This work intends to extend this self-assessment option to all UASs regardless of control scheme as a “plug-and-play” add-on by building a reliable and robust tool that requires little tuning

    Software Considerations for Subscale Flight Testing of Experimental Control Laws

    Get PDF
    The NASA AirSTAR system has been designed to address the challenges associated with safe and efficient subscale flight testing of research control laws in adverse flight conditions. In this paper, software elements of this system are described, with an emphasis on components which allow for rapid prototyping and deployment of aircraft control laws. Through model-based design and automatic coding a common code-base is used for desktop analysis, piloted simulation and real-time flight control. The flight control system provides the ability to rapidly integrate and test multiple research control laws and to emulate component or sensor failures. Integrated integrity monitoring systems provide aircraft structural load protection, isolate the system from control algorithm failures, and monitor the health of telemetry streams. Finally, issues associated with software configuration management and code modularity are briefly discussed

    Fault tolerant control of multi-rotor unmanned aerial vehicles using sliding mode based schemes

    Get PDF
    This thesis investigates fault-tolerant control (FTC) for the specific application of small multirotor unmanned aerial vehicles (Unmanned Aerial Vehicle (UAV)s). The fault-tolerant controllers in this thesis are based on the combination of sliding mode control with control allocation where the control signals are distributed based on motors' health level. This alleviates the need to reconfigure the overall structure of the controllers. The thesis considered both the over actuated (sufficient redundancy) and under-actuated UAVs. Three multirotor UAVs have been considered in this thesis which includes a quadrotor (4 rotors), an Octocopter (8 rotors) and a spherical UAV. The non-linear mathematical models for each of the UAVs are presented. One of the main contributions of this thesis is the hardware implementation of the sliding mode Fault Tolerant Control (FTC) scheme on an open-source autopilot microcontroller called Pixhawk for a quadrotor UAV. The controller was developed in Simulink and implemented on the microcontroller using the Matlab/Simulink support packages. A gimbal- based test rig was developed and built to offer a safe test bed for testing control designs. Actual flight tests were done which showed sound responses during fault-free and faulty scenarios. This work represents one of successful implementation work of sliding mode FTC in the literature. Another key contribution of this thesis is the development of the mathematical model of a unique spherical UAV with highly redundant control inputs. The use of novel 8 flaps and 2 rotors configuration of the spherical UAV considered in this thesis provides a unique fault tolerant capability, especially when combined with the sliding mode-based FTC scheme. A key development in the later chapters of the thesis considers fault-tolerant control strategy when no redundancy is available. Unlike many works which consider FTC on quadrotors in the literature (which can only handle faults), the proposed schemes in the later chapters also include cases when failures also occur converting the system to an under actuated system. In one chapter, a bespoke Linear Parameter Varying (LPV) based controller is developed for a reduced attitude dynamics system by exploiting non-standard equation of motions which relates to position acceleration and load factor dynamics. This is unique as compared to the typical Euler angle control (roll, pitch and yaw angle control). In the last chapter, a fault-tolerant control scheme which can handle both the over and under actuated system is presented. The scheme considers an octocopter and can be used in fault-free, faulty and failure conditions up to two remaining motors. The scheme exploits the differential flatness property, another unique property of multirotor UAVs. This allows both inner loop and outer loop controller to be designed using sliding mode (as opposed to many sliding mode FTC in the literature, which only considers sliding mode for the inner loop control)

    Kernel-based fault diagnosis of inertial sensors using analytical redundancy

    Get PDF
    Kernel methods are able to exploit high-dimensional spaces for representational advantage, while only operating implicitly in such spaces, thus incurring none of the computational cost of doing so. They appear to have the potential to advance the state of the art in control and signal processing applications and are increasingly seeing adoption across these domains. Applications of kernel methods to fault detection and isolation (FDI) have been reported, but few in aerospace research, though they offer a promising way to perform or enhance fault detection. It is mostly in process monitoring, in the chemical processing industry for example, that these techniques have found broader application. This research work explores the use of kernel-based solutions in model-based fault diagnosis for aerospace systems. Specifically, it investigates the application of these techniques to the detection and isolation of IMU/INS sensor faults – a canonical open problem in the aerospace field. Kernel PCA, a kernelised non-linear extension of the well-known principal component analysis (PCA) algorithm, is implemented to tackle IMU fault monitoring. An isolation scheme is extrapolated based on the strong duality known to exist between probably the most widely practiced method of FDI in the aerospace domain – the parity space technique – and linear principal component analysis. The algorithm, termed partial kernel PCA, benefits from the isolation properties of the parity space method as well as the non-linear approximation ability of kernel PCA. Further, a number of unscented non-linear filters for FDI are implemented, equipped with data-driven transition models based on Gaussian processes - a non-parametric Bayesian kernel method. A distributed estimation architecture is proposed, which besides fault diagnosis can contemporaneously perform sensor fusion. It also allows for decoupling faulty sensors from the navigation solution

    Proceedings of the International Micro Air Vehicles Conference and Flight Competition 2017 (IMAV 2017)

    Get PDF
    The IMAV 2017 conference has been held at ISAE-SUPAERO, Toulouse, France from Sept. 18 to Sept. 21, 2017. More than 250 participants coming from 30 different countries worldwide have presented their latest research activities in the field of drones. 38 papers have been presented during the conference including various topics such as Aerodynamics, Aeroacoustics, Propulsion, Autopilots, Sensors, Communication systems, Mission planning techniques, Artificial Intelligence, Human-machine cooperation as applied to drones

    A Contribution to the Design of Highly Redundant Compliant Aerial Manipulation Systems

    Get PDF
    Es ist vorhersehbar, dass die Luftmanipulatoren in den nächsten Jahrzehnten für viele Aufgaben eingesetzt werden, die entweder zu gefährlich oder zu teuer sind, um sie mit herkömmlichen Methoden zu bewältigen. In dieser Arbeit wird eine neuartige Lösung für die Gesamtsteuerung von hochredundanten Luftmanipulationssystemen vorgestellt. Die Ergebnisse werden auf eine Referenzkonfiguration angewendet, die als universelle Plattform für die Durchführung verschiedener Luftmanipulationsaufgaben etabliert wird. Diese Plattform besteht aus einer omnidirektionalen Drohne und einem seriellen Manipulator. Um den modularen Regelungsentwurf zu gewährleisten, werden zwei rechnerisch effiziente Algorithmen untersucht, um den virtuellen Eingang den Aktuatorbefehlen zuzuordnen. Durch die Integration eines auf einem künstlichen neuronalen Netz basierenden Diagnosemoduls und der rekonfigurierbaren Steuerungszuordnung in den Regelkreis, wird die Fehlertoleranz für die Drohne erzielt. Außerdem wird die Motorsättigung durch Rekonfiguration der Geschwindigkeits- und Beschleunigungsprofile behandelt. Für die Beobachtung der externen Kräfte und Drehmomente werden zwei Filter vorgestellt. Dies ist notwendig, um ein nachgiebiges Verhalten des Endeffektors durch die achsenselektive Impedanzregelung zu erreichen. Unter Ausnutzung der Redundanz des vorgestellten Luftmanipulators wird ein Regler entworfen, der nicht nur die Referenz der Endeffektor-Bewegung verfolgt, sondern auch priorisierte sekundäre Aufgaben ausführt. Die Wirksamkeit der vorgestellten Lösungen wird durch umfangreiche Tests überprüft, und das vorgestellte Steuerungssystem wird als sehr vielseitig und effektiv bewertet.:1 Introduction 2 Fundamentals 3 System Design and Modeling 4 Reconfigurable Control Allocation 5 Fault Diagnostics For Free Flight 6 Force and Torque Observer 7 Trajectory Generation 8 Hybrid Task Priority Control 9 System Integration and Performance Evaluation 10 ConclusionIn the following decades, aerial manipulators are expected to be deployed in scenarios that are either too dangerous for human beings or too expensive to be accomplished by traditional methods. This thesis presents a novel solution for the overall control of highly redundant aerial manipulation systems. The results are applied to a reference configuration established as a universal platform for performing various aerial manipulation tasks. The platform consists of an omnidirectional multirotor UAV and a serial manipulator. To ensure modular control design, two computationally efficient algorithms are studied to allocate the virtual input to actuator commands. Fault tolerance of the aerial vehicle is achieved by integrating a diagnostic module based on an artificial neural network and the reconfigurable control allocation into the control loop. Besides, the risk of input saturation of individual rotors is minimized by predicting and reconfiguring the speed and acceleration responses. Two filter-based observers are presented to provide the knowledge of external forces and torques, which is necessary to achieve compliant behavior of the end-effector through an axis-selective impedance control in the outer loop. Exploiting the redundancy of the proposed aerial manipulator, the author has designed a control law to achieve the desired end-effector motion and execute secondary tasks in order of priority. The effectiveness of the proposed designs is verified with extensive tests generated by following Monte Carlo method, and the presented control scheme is proved to be versatile and effective.:1 Introduction 2 Fundamentals 3 System Design and Modeling 4 Reconfigurable Control Allocation 5 Fault Diagnostics For Free Flight 6 Force and Torque Observer 7 Trajectory Generation 8 Hybrid Task Priority Control 9 System Integration and Performance Evaluation 10 Conclusio

    Fault-Tolerant Actuation Architectures for Unmanned Aerial Vehicles

    Get PDF
    Rising civilian applications that make use of unmanned aerial vehicles (UAVs) demand crucial precautions to minimize safety hazards. Future UAVs are expected to incorporate fault-tolerant architectures for critical on-board systems to ensure compliance with airworthiness certification. Reliability reports of in-service UAVs showed that flight control actuators are among the highest root-causes of UAVs mishaps. In this paper, the current state-of-the-art actuation architectures for UAVs are reviewed to identify technical requirements for certification. This work is part of a TEMA-UAV research project aimed at developing certifiable fault-Tolerant Electro-Mechanical Actuators for future UAVs
    • …
    corecore