102 research outputs found

    FPGA Accelerators on Heterogeneous Systems: An Approach Using High Level Synthesis

    Get PDF
    La evolución de las FPGAs como dispositivos para el procesamiento con alta eficiencia energética y baja latencia de control, comparada con dispositivos como las CPUs y las GPUs, las han hecho atractivas en el ámbito de la computación de alto rendimiento (HPC).A pesar de las inumerables ventajas de las FPGAs, su inclusión en HPC presenta varios retos. El primero, la complejidad que supone la programación de las FPGAs comparada con dispositivos como las CPUs y las GPUs. Segundo, el tiempo de desarrollo es alto debido al proceso de síntesis del hardware. Y tercero, trabajar con más arquitecturas en HPC requiere el manejo y la sintonización de los detalles de cada dispositivo, lo que añade complejidad.Esta tesis aborda estos 3 problemas en diferentes niveles con el objetivo de mejorar y facilitar la adopción de las FPGAs usando la síntesis de alto nivel(HLS) en sistemas HPC.En un nivel próximo al hardware, en esta tesis se desarrolla un modelo analítico para las aplicaciones limitadas en memoria, que es una situación común en aplicaciones de HPC. El modelo, desarrollado para kernels programados usando HLS, puede predecir el tiempo de ejecución con alta precisión y buena adaptabilidad ante cambios en la tecnología de la memoria, como las DDR4 y HBM2, y en las variaciones en la frecuencia del kernel. Esta solución puede aumentar potencialmente la productividad de las personas que programan, reduciendo el tiempo de desarrollo y optimización de las aplicaciones.Entender los detalles de bajo nivel puede ser complejo para las programadoras promedio, y el desempeño de las aplicaciones para FPGA aún requiere un alto nivel en las habilidades de programación. Por ello, nuestra segunda propuesta está enfocada en la extensión de las bibliotecas con una propuesta para cómputo en visión artificial que sea portable entre diferentes fabricantes de FPGAs. La biblioteca se ha diseñado basada en templates, lo que permite una biblioteca que da flexibilidad a la generación del hardware y oculta decisiones de diseño críticas como la comunicación entre nodos, el modelo de concurrencia, y la integración de las aplicaciones en el sistema heterogéneo para facilitar el desarrollo de grafos de visión artificial que pueden ser complejos.Finalmente, en el runtime del host del sistema heterogéneo, hemos integrado la FPGA para usarla de forma trasparente como un dispositivo acelerador para la co-ejecución en sistemas heterogéneos. Hemos hecho una serie propuestas de altonivel de abstracción que abarca los mecanismos de sincronización y políticas de balanceo en un sistema altamente heterogéneo compuesto por una CPU, una GPU y una FPGA. Se presentan los principales retos que han inspirado esta investigación y los beneficios de la inclusión de una FPGA en rendimiento y energía.En conclusión, esta tesis contribuye a la adopción de las FPGAs para entornos HPC, aportando soluciones que ayudan a reducir el tiempo de desarrollo y mejoran el desempeño y la eficiencia energética del sistema.---------------------------------------------The emergence of FPGAs in the High-Performance Computing domain is arising thanks to their promise of better energy efficiency and low control latency, compared with other devices such as CPUs or GPUs.Albeit these benefits, their complete inclusion into HPC systems still faces several challenges. First, FPGA complexity means its programming more difficult compared to devices such as CPU and GPU. Second, the development time is longer due to the required synthesis effort. And third, working with multiple devices increments the details that should be managed and increase hardware complexity.This thesis tackles these 3 problems at different stack levels to improve and to make easier the adoption of FPGAs using High-Level Synthesis on HPC systems. At a close to the hardware level, this thesis contributes with a new analytical model for memory-bound applications, an usual situation for HPC applications. The model for HLS kernels can anticipate application performance before place and route, reducing the design development time. Our results show a high precision and adaptable model for external memory technologies such as DDR4 and HBM2, and kernel frequency changes. This solution potentially increases productivity, reducing application development time.Understanding low-level implementation details is difficult for average programmers, and the development of FPGA applications still requires high proficiency program- ming skills. For this reason, the second proposal is focused on the extension of a computer vision library to be portable among two of the main FPGA vendors. The template-based library allows hardware flexibility and hides design decisions such as the communication among nodes, the concurrency programming model, and the application’s integration in the heterogeneous system, to develop complex vision graphs easily.Finally, we have transparently integrated the FPGA in a high level framework for co-execution with other devices. We propose a set of high level abstractions covering synchronization mechanism and load balancing policies in a highly heterogeneous system with CPU, GPU, and FPGA devices. We present the main challenges that inspired this research and the benefits of the FPGA use demonstrating performance and energy improvements.<br /

    High-level synthesis of fine-grained weakly consistent C concurrency

    Get PDF
    High-level synthesis (HLS) is the process of automatically compiling high-level programs into a netlist (collection of gates). Given an input program, HLS tools exploit its inherent parallelism and pipelining opportunities to generate efficient customised hardware. C-based programs are the most popular input for HLS tools, but these tools historically only synthesise sequential C programs. As the appeal for software concurrency rises, HLS tools are beginning to synthesise concurrent C programs, such as C/C++ pthreads and OpenCL. Although supporting software concurrency leads to better hardware parallelism, shared memory synchronisation is typically serialised to ensure correct memory behaviour, via locks. Locks are safety resources that ensure exclusive access of shared memory, eliminating data races and providing synchronisation guarantees for programmers.  As an alternative to lock-based synchronisation, the C memory model also defines the possibility of lock-free synchronisation via fine-grained atomic operations (`atomics'). However, most HLS tools either do not support atomics at all or implement atomics using locks. Instead, we treat the synthesis of atomics as a scheduling problem. We show that we can augment the intra-thread memory constraints during memory scheduling of concurrent programs to support atomics. On average, hardware generated by our method is 7.5x faster than the state-of-the-art, for our set of experiments. Our method of synthesising atomics enables several unique possibilities. Chiefly, we are capable of supporting weakly consistent (`weak') atomics, which necessitate fewer ordering constraints compared to sequentially consistent (SC) atomics. However, implementing weak atomics is complex and error-prone and hence we formally verify our methods via automated model checking to ensure our generated hardware is correct. Furthermore, since the C memory model defines memory behaviour globally, we can globally analyse the entire program to generate its memory constraints. Additionally, we can also support loop pipelining by extending our methods to generate inter-iteration memory constraints. On average, weak atomics, global analysis and loop pipelining improve performance by 1.6x, 3.4x and 1.4x respectively, for our set of experiments. Finally, we present a case study of a real-world example via an HLS-based Google PageRank algorithm, whose performance improves by 4.4x via lock-free streaming and work-stealing.Open Acces

    Accelerating Halide on an FPGA by using CIRCT and Calyx as an intermediate step to go from a high-level and software-centric IRs down to RTL

    Get PDF
    Image processing and, more generally, array processing play an essential role in modern life: from applying filters to the images that we upload to social media to running object detection algorithms on self-driving cars. Optimizing these algorithms can be complex and often results in non-portable code. The Halide language provides a simple way to write image and array processing algorithms by separating the algorithm definition (what needs to be executed) from its execution schedule (how it is executed), delivering state-of-the-art performance that exceeds hand-tuned parallel and vectorized code. Due to the inherent parallel nature of these algorithms, FPGAs present an attractive acceleration platform. While previous work has added an RTL code generator to Halide, and utilized other heterogeneous computing languages as an intermediate step, these projects are no longer maintained. MLIR is an attractive solution, allowing the generation of code that can target multiple devices, such as parallelized and vectorized CPU code, OpenMP, and CUDA. CIRCT builds on top of MLIR to convert generic MLIR code to register transfer level (RTL) languages by using Calyx, a new intermediate language (IL) for compiling high-level programs into hardware designs. This thesis presents a novel flow that implements an MLIR code generator for Halide that generates RTL code, adding the necessary wrappers to execute that code on Xilinx FPGA devices. Additionally, it implements a Halide runtime using the Xilinx Runtime (XRT), enabling seamless execution of the generated Halide RTL kernels. While this thesis provides initial support for running Halide kernels and not all features and optimizations are supported, it also details the future work needed to improve the performance of the generated RTL kernels. The proposed flow serves as a foundation for further research and development in the field of hardware acceleration for image and array processing applications using Halide

    GME: GPU-based Microarchitectural Extensions to Accelerate Homomorphic Encryption

    Full text link
    Fully Homomorphic Encryption (FHE) enables the processing of encrypted data without decrypting it. FHE has garnered significant attention over the past decade as it supports secure outsourcing of data processing to remote cloud services. Despite its promise of strong data privacy and security guarantees, FHE introduces a slowdown of up to five orders of magnitude as compared to the same computation using plaintext data. This overhead is presently a major barrier to the commercial adoption of FHE. In this work, we leverage GPUs to accelerate FHE, capitalizing on a well-established GPU ecosystem available in the cloud. We propose GME, which combines three key microarchitectural extensions along with a compile-time optimization to the current AMD CDNA GPU architecture. First, GME integrates a lightweight on-chip compute unit (CU)-side hierarchical interconnect to retain ciphertext in cache across FHE kernels, thus eliminating redundant memory transactions. Second, to tackle compute bottlenecks, GME introduces special MOD-units that provide native custom hardware support for modular reduction operations, one of the most commonly executed sets of operations in FHE. Third, by integrating the MOD-unit with our novel pipelined 6464-bit integer arithmetic cores (WMAC-units), GME further accelerates FHE workloads by 19%19\%. Finally, we propose a Locality-Aware Block Scheduler (LABS) that exploits the temporal locality available in FHE primitive blocks. Incorporating these microarchitectural features and compiler optimizations, we create a synergistic approach achieving average speedups of 796×796\times, 14.2×14.2\times, and 2.3×2.3\times over Intel Xeon CPU, NVIDIA V100 GPU, and Xilinx FPGA implementations, respectively

    Domain Specific Computing in Tightly-Coupled Heterogeneous Systems

    Get PDF
    Over the past several decades, researchers and programmers across many disciplines have relied on Moores law and Dennard scaling for increases in compute capability in modern processors. However, recent data suggest that the number of transistors per square inch on integrated circuits is losing pace with Moores laws projection due to the breakdown of Dennard scaling at smaller semiconductor process nodes. This has signaled the beginning of a new “golden age in computer architecture” in which the paradigm will be shifted from improving traditional processor performance for general tasks to architecting hardware that executes a class of applications in a high-performing manner. This shift will be paved, in part, by making compute systems more heterogeneous and investigating domain specific architectures. However, the notion of domain specific architectures raises many research questions. Specifically, what constitutes a domain? How does one architect hardware for a specific domain? In this dissertation, we present our work towards domain specific computing. We start by constructing a guiding definition for our target domain and then creating a benchmark suite of applications based on our domain definition. We then use quantitative metrics from the literature to characterize our domain in order to gain insights regarding what would be most beneficial in hardware targeted specifically for the domain. From the characterization, we learn that data movement is a particularly salient aspect of our domain. Motivated by this fact, we evaluate our target platform, the Intel HARPv2 CPU+FPGA system, for architecting domain specific hardware through a portability and performance evaluation. To guide the creation of domain specific hardware for this platform, we create a novel tool to quantify spatial and temporal locality. We apply this tool to our benchmark suite and use the generated outputs as features to an unsupervised clustering algorithm. We posit that the resulting clusters represent sub-domains within our originally specified domain; specifically, these clusters inform whether a kernel of computation should be designed as a widely vectorized or deeply pipelined compute unit. Using the lessons learned from the domain characterization and hardware platform evaluation, we outline our process of designing hardware for our domain, and empirically verify that our prediction regarding a wide or deep kernel implementation is correct

    Vector coprocessor sharing techniques for multicores: performance and energy gains

    Get PDF
    Vector Processors (VPs) created the breakthroughs needed for the emergence of computational science many years ago. All commercial computing architectures on the market today contain some form of vector or SIMD processing. Many high-performance and embedded applications, often dealing with streams of data, cannot efficiently utilize dedicated vector processors for various reasons: limited percentage of sustained vector code due to substantial flow control; inherent small parallelism or the frequent involvement of operating system tasks; varying vector length across applications or within a single application; data dependencies within short sequences of instructions, a problem further exacerbated without loop unrolling or other compiler optimization techniques. Additionally, existing rigid SIMD architectures cannot tolerate efficiently dynamic application environments with many cores that may require the runtime adjustment of assigned vector resources in order to operate at desired energy/performance levels. To simultaneously alleviate these drawbacks of rigid lane-based VP architectures, while also releasing on-chip real estate for other important design choices, the first part of this research proposes three architectural contexts for the implementation of a shared vector coprocessor in multicore processors. Sharing an expensive resource among multiple cores increases the efficiency of the functional units and the overall system throughput. The second part of the dissertation regards the evaluation and characterization of the three proposed shared vector architectures from the performance and power perspectives on an FPGA (Field-Programmable Gate Array) prototype. The third part of this work introduces performance and power estimation models based on observations deduced from the experimental results. The results show the opportunity to adaptively adjust the number of vector lanes assigned to individual cores or processing threads in order to minimize various energy-performance metrics on modern vector- capable multicore processors that run applications with dynamic workloads. Therefore, the fourth part of this research focuses on the development of a fine-to-coarse grain power management technique and a relevant adaptive hardware/software infrastructure which dynamically adjusts the assigned VP resources (number of vector lanes) in order to minimize the energy consumption for applications with dynamic workloads. In order to remove the inherent limitations imposed by FPGA technologies, the fifth part of this work consists of implementing an ASIC (Application Specific Integrated Circuit) version of the shared VP towards precise performance-energy studies involving high- performance vector processing in multicore environments

    Towards hardware as a reconfigurable, elastic, and specialized service

    Get PDF
    As modern Data Center workloads become increasingly complex, constrained, and critical, mainstream CPU-centric computing has had ever more difficulty in keeping pace. Future data centers are moving towards a more fluid and heterogeneous model, with computation and communication no longer localized to commodity CPUs and routers. Next generation data-centric Data Centers will compute everywhere, whether data is stationary (e.g. in memory) or on the move (e.g. in network). While deploying FPGAs in NICS, as co-processors, in the router, and in Bump-in-the-Wire configurations is a step towards implementing the data-centric model, it is only part of the overall solution. The other part is actually leveraging this reconfigurable hardware. For this to happen, two problems must be addressed: code generation and deployment generation. By code generation we mean transforming abstract representations of an algorithm into equivalent hardware. Deployment generation refers to the runtime support needed to facilitate the execution of this hardware on an FPGA. Efforts at creating supporting tools in these two areas have thus far provided limited benefits. This is because the efforts are limited in one or more of the following ways: They i) do not provide fundamental solutions to a number of challenges, which makes them useful only to a limited group of (mostly) hardware developers, ii) are constrained in their scope, or iii) are ad hoc, i.e., specific to a single usage context, FPGA vendor, or Data Center configuration. Moreover, efforts in these areas have largely been mutually exclusive, which results in incompatibility across development layers; this requires wrappers to be designed to make interfaces compatible. As a result there is significant complexity and effort required to code and deploy efficient custom hardware for FPGAs; effort that may be orders-of-magnitude greater than for analogous software environments. The goal of this dissertation is to create a framework that enables reconfigurable logic in Data Centers to be targeted with the same level of effort as for a single CPU core. The underlying mechanism to this is a framework, which we refer to as Hardware as a Reconfigurable, Elastic and Specialized Service, or HaaRNESS. In this dissertation, we address two of the core challenges of HaaRNESS: reducing the complexity of code generation by constraining High Level Synthesis (HLS) toolflows, and replacing ad hoc models of deployment generation by generalizing and formalizing what is needed for a hardware Operating System. These parts are unified by the back-end of HLS toolflows which link generated compute pipelines with the operating system, and provide appropriate APIs, wrappers, and software runtimes. The contributions of this dissertation are the following: i) an empirically guided set of systematic transformations for generating high quality HLS code; ii) a framework for instrumenting HLS compiler to identify and remove optimization blockers; iii) a framework for RTL simulation and IP generation of HLS kernels for rapid turnaround; and iv) a framework for generalization and formalization of hardware operating systems to address the {\it ad hoc}'ness of existing deployment generation and ensure uniform structure and APIs

    Applications and Techniques for Fast Machine Learning in Science

    Get PDF
    In this community review report, we discuss applications and techniques for fast machine learning (ML) in science - the concept of integrating powerful ML methods into the real-time experimental data processing loop to accelerate scientific discovery. The material for the report builds on two workshops held by the Fast ML for Science community and covers three main areas: applications for fast ML across a number of scientific domains; techniques for training and implementing performant and resource-efficient ML algorithms; and computing architectures, platforms, and technologies for deploying these algorithms. We also present overlapping challenges across the multiple scientific domains where common solutions can be found. This community report is intended to give plenty of examples and inspiration for scientific discovery through integrated and accelerated ML solutions. This is followed by a high-level overview and organization of technical advances, including an abundance of pointers to source material, which can enable these breakthroughs
    corecore