207 research outputs found

    InShopnito: an advanced yet privacy-friendly mobile shopping application

    Get PDF
    Mobile Shopping Applications (MSAs) are rapidly gaining popularity. They enhance the shopping experience, by offering customized recommendations or incorporating customer loyalty programs. Although MSAs are quite effective at attracting new customers and binding existing ones to a retailer's services, existing MSAs have several shortcomings. The data collection practices involved in MSAs and the lack of transparency thereof are important concerns for many customers. This paper presents inShopnito, a privacy-preserving mobile shopping application. All transactions made in inShopnito are unlinkable and anonymous. However, the system still offers the expected features from a modern MSA. Customers can take part in loyalty programs and earn or spend loyalty points and electronic vouchers. Furthermore, the MSA can suggest personalized recommendations even though the retailer cannot construct rich customer profiles. These profiles are managed on the smartphone and can be partially disclosed in order to get better, customized recommendations. Finally, we present an implementation called inShopnito, of which the security and performance is analyzed. In doing so, we show that it is possible to have a privacy-preserving MSA without having to sacrifice practicality

    TumbleBit: an untrusted Bitcoin-compatible anonymous payment hub

    Get PDF
    This paper presents TumbleBit, a new unidirectional unlinkable payment hub that is fully compatible with today s Bitcoin protocol. TumbleBit allows parties to make fast, anonymous, off-blockchain payments through an untrusted intermediary called the Tumbler. TumbleBits anonymity properties are similar to classic Chaumian eCash: no one, not even the Tumbler, can link a payment from its payer to its payee. Every payment made via TumbleBit is backed by bitcoins, and comes with a guarantee that Tumbler can neither violate anonymity, nor steal bitcoins, nor print money by issuing payments to itself. We prove the security of TumbleBit using the real/ideal world paradigm and the random oracle model. Security follows from the standard RSA assumption and ECDSA unforgeability. We implement TumbleBit, mix payments from 800 users and show that TumbleBits offblockchain payments can complete in seconds.https://eprint.iacr.org/2016/575.pdfPublished versio

    Privacy-Preserving Electronic Ticket Scheme with Attribute-based Credentials

    Get PDF
    Electronic tickets (e-tickets) are electronic versions of paper tickets, which enable users to access intended services and improve services' efficiency. However, privacy may be a concern of e-ticket users. In this paper, a privacy-preserving electronic ticket scheme with attribute-based credentials is proposed to protect users' privacy and facilitate ticketing based on a user's attributes. Our proposed scheme makes the following contributions: (1) users can buy different tickets from ticket sellers without releasing their exact attributes; (2) two tickets of the same user cannot be linked; (3) a ticket cannot be transferred to another user; (4) a ticket cannot be double spent; (5) the security of the proposed scheme is formally proven and reduced to well known (q-strong Diffie-Hellman) complexity assumption; (6) the scheme has been implemented and its performance empirically evaluated. To the best of our knowledge, our privacy-preserving attribute-based e-ticket scheme is the first one providing these five features. Application areas of our scheme include event or transport tickets where users must convince ticket sellers that their attributes (e.g. age, profession, location) satisfy the ticket price policies to buy discounted tickets. More generally, our scheme can be used in any system where access to services is only dependent on a user's attributes (or entitlements) but not their identities.Comment: 18pages, 6 figures, 2 table

    A Digital Cash Paradigm with Valued and No-Valued e-Coins

    Get PDF
    Digital cash is a form of money that is stored digitally. Its main advantage when compared to traditional credit or debit cards is the possibility of carrying out anonymous transactions. Diverse digital cash paradigms have been proposed during the last decades, providing different approaches to avoid the double-spending fraud, or features like divisibility or transferability. This paper presents a new digital cash paradigm that includes the so-called no-valued e-coins, which are e-coins that can be generated free of charge by customers. A vendor receiving a payment cannot distinguish whether the received e-coin is valued or not, but the customer will receive the requested digital item only in the former case. A straightforward application of bogus transactions involving no-valued e-coins is the masking of consumption patterns. This new paradigm has also proven its validity in the scope of privacy-preserving pay-by-phone parking systems, and we believe it can become a very versatile building block in the design of privacy-preserving protocols in other areas of research. This paper provides a formal description of the new paradigm, including the features required for each of its components together with a formal analysis of its security.This research was funded by the Spanish Ministry of Science, Innovation and Universities grant number MTM2017-83271-R

    Pseudonym systems

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1999.Includes bibliographical references (p. 50-52).by Anna Lysyanskaya.S.M

    SECMACE: Scalable and Robust Identity and Credential Management Infrastructure in Vehicular Communication Systems

    Full text link
    Several years of academic and industrial research efforts have converged to a common understanding on fundamental security building blocks for the upcoming Vehicular Communication (VC) systems. There is a growing consensus towards deploying a special-purpose identity and credential management infrastructure, i.e., a Vehicular Public-Key Infrastructure (VPKI), enabling pseudonymous authentication, with standardization efforts towards that direction. In spite of the progress made by standardization bodies (IEEE 1609.2 and ETSI) and harmonization efforts (Car2Car Communication Consortium (C2C-CC)), significant questions remain unanswered towards deploying a VPKI. Deep understanding of the VPKI, a central building block of secure and privacy-preserving VC systems, is still lacking. This paper contributes to the closing of this gap. We present SECMACE, a VPKI system, which is compatible with the IEEE 1609.2 and ETSI standards specifications. We provide a detailed description of our state-of-the-art VPKI that improves upon existing proposals in terms of security and privacy protection, and efficiency. SECMACE facilitates multi-domain operations in the VC systems and enhances user privacy, notably preventing linking pseudonyms based on timing information and offering increased protection even against honest-but-curious VPKI entities. We propose multiple policies for the vehicle-VPKI interactions, based on which and two large-scale mobility trace datasets, we evaluate the full-blown implementation of SECMACE. With very little attention on the VPKI performance thus far, our results reveal that modest computing resources can support a large area of vehicles with very low delays and the most promising policy in terms of privacy protection can be supported with moderate overhead.Comment: 14 pages, 9 figures, 10 tables, IEEE Transactions on Intelligent Transportation System

    Platypus: A Central Bank Digital Currency with Unlinkable Transactions and Privacy-Preserving Regulation

    Get PDF
    Due to the popularity of blockchain-based cryptocurrencies, the increasing digitalization of payments, and the constantly reducing role of cash in society, central banks have shown an increased interest in deploying central bank digital currencies (CBDCs) that could serve as a digital cash-equivalent. While most recent research on CBDCs focuses on blockchain technology, it is not clear that this choice of technology provides the optimal solution. In particular, the centralized trust model of a CBDC offers opportunities for different designs. In this paper, we depart from blockchain designs and instead build on ideas from traditional e-cash schemes. We propose a new style of building digital currencies that combines the transaction processing model of e-cash with an account-based fund management model. We argue that such a style of building digital currencies is especially well-suited to CBDCs. We also design the first such digital currency system, called Platypus, that provides strong privacy, high scalability, and expressive but simple regulation, which are all critical features for a CBDC. Platypus achieves these properties by adapting techniques similar to those used in anonymous blockchain cryptocurrencies like Zcash to fit our account model and applying them to the e-cash context
    • …
    corecore