123 research outputs found

    Assessment of attribute-based credentials for privacy-preserving road traffic services in smart cities

    Get PDF
    Smart cities involve the provision of advanced services for road traffic users. Vehicular ad hoc networks (VANETs) are a promising communication technology in this regard. Preservation of privacy is crucial in these services to foster their acceptance. Previous approaches have mainly focused on PKI-based or ID-based cryptography. However, these works have not fully addressed the minimum information disclosure principle. Thus, questions such as how to prove that a driver is a neighbour of a given zone, without actually disclosing his identity or real address, remain unaddressed. A set of techniques, referred to as Attribute-Based Credentials (ABCs), have been proposed to address this need in traditional computation scenarios. In this paper, we explore the use of ABCs in the vehicular context. For this purpose, we focus on a set of use cases from European Telecommunications Standards Institute (ETSI) Basic Set of Applications, specially appropriate for the early development of smart cities. We assess which ABC techniques are suitable for this scenario, focusing on three representative ones—Idemix, U-Prove and VANET-updated Persiano systems. Our experimental results show that they are feasible in VANETs considering state-of-the-art technologies, and that Idemix is the most promising technique for most of the considered use cases.This work was supported by the MINECO grant TIN2013-46469-R (SPINY: Security and Privacy in the Internet of You); the CAM grant S2013/ICE-3095 (CIBERDINE: Cybersecurity, Data, and Risks) and by the MINECO grant TIN2016-79095-C2-2-R (SMOG-DEV - Security mechanisms for fog computing: advanced security for devices). Jose Maria de Fuentes and Lorena Gonzalez were also supported by the Programa de Ayudas para la Movilidad of Carlos III University of Madrid

    Readiness of Anonymous Credentials for Real Environment Deployment

    Get PDF
    Attribute-based Credentials (ABCs) are a promising technology for protecting users' privacy and digital identity. We can use ABCs in a multitude of contexts. For instance, we can prove the validity of transportation tickets, demonstrate the legal age, prove the health status, or prove access rights in the company environment. All of this, we can do without disclosing complete personal identity. Nevertheless, ABCs generally require computational power that some wearable devices cannot cope with. In this paper, we present our implementation of a privacy-enhancing authentication system based on ABCs technology. The system is suitable for deployment in real-world scenarios and uses a wide range of differently powerful user devices (e.g., smart cards, smartphones, and wearables). Based on our implementation results, we also discuss the implementations aspects of ABCs, their readiness, and usability in real-world applications

    Cryptographic Protection of Digital Identity

    Get PDF
    Dizertační práce se zabývá kryptografickými schématy zvyšující ochranu soukromí uživatelů v systémech řízení přístupu a sběru dat. V současnosti jsou systémy fyzického řízení přístupu na bázi čipových karet využívány téměř dennodenně většinou z nás, například v zaměstnání, ve veřejné dopravě a v hotelech. Tyto systémy však stále neposkytují dostatečnou kryptografickou ochranu a tedy bezpečnost. Uživatelské identifikátory a klíče lze snadno odposlechnout a padělat. Funkce, které by zajišťovaly ochranu soukromí uživatele, téměř vždy chybí. Proto je zde reálné riziko možného sledovaní lidí, jejich pohybu a chovaní. Poskytovatelé služeb nebo případní útočníci, kteří odposlouchávají komunikaci, mohou vytvářet profily uživatelů, ví, co dělají, kde se pohybují a o co se zajímají. Za účelem zlepšení tohoto stavu jsme navrhli čtyři nová kryptografická schémata založená na efektivních důkazech s nulovou znalostí a kryptografii eliptických křivek. Konkrétně dizertační práce prezentuje tři nová autentizační schémata pro využití v systémech řízení přístupu a jedno nové schéma pro využití v systémech sběru dat. První schéma využívá distribuovaný autentizační přístup vyžadující spolupráci více RFID prvků v autentizačním procesu. Tato vlastnost je výhodná zvláště v případech řízení přístupu do nebezpečných prostor, kdy pro povolení přístupu uživatele je nezbytné, aby byl uživatel vybaven ochrannými pomůckami (se zabudovanými RFID prvky). Další dvě schémata jsou založena na atributovém způsobu ověření, tj. schémata umožňují anonymně prokázat vlastnictví atributů uživatele, jako je věk, občanství a pohlaví. Zatím co jedno schéma implementuje efektivní revokační a identifikační mechanismy, druhé schéma poskytuje nejrychlejší verifikaci držení uživatelských atributů ze všech současných řešení. Poslední, čtvrté schéma reprezentuje schéma krátkého skupinového podpisu pro scénář sběru dat. Schémata sběru dat se používají pro bezpečný a spolehlivý přenos dat ze vzdálených uzlů do řídící jednotky. S rostoucím významem chytrých měřičů v energetice, inteligentních zařízení v domácnostech a rozličných senzorových sítí, se potřeba bezpečných systémů sběru dat stává velmi naléhavou. Tato schémata musí podporovat nejen standardní bezpečnostní funkce, jako je důvěrnost a autentičnost přenášených dat, ale také funkce nové, jako je silná ochrana soukromí a identity uživatele či identifikace škodlivých uživatelů. Navržená schémata jsou prokazatelně bezpečná a nabízí celou řadu funkcí rozšiřující ochranu soukromí a identity uživatele, jmenovitě se pak jedná o zajištění anonymity, nesledovatelnosti a nespojitelnosti jednotlivých relací uživatele. Kromě úplné kryptografické specifikace a bezpečnostní analýzy navržených schémat, obsahuje tato práce také výsledky měření implementací jednotlivých schémat na v současnosti nejpoužívanějších zařízeních v oblasti řízení přístupu a sběru dat.The doctoral thesis deals with privacy-preserving cryptographic schemes in access control and data collection areas. Currently, card-based physical access control systems are used by most people on a daily basis, for example, at work, in public transportation and at hotels. However, these systems have often very poor cryptographic protection. For instance, user identifiers and keys can be easily eavesdropped and counterfeited. Furthermore, privacy-preserving features are almost missing and, therefore, user’s movement and behavior can by easily tracked. Service providers (and even eavesdroppers) can profile users, know what they do, where they go, and what they are interested in. In order to improve this state, we propose four novel cryptographic schemes based on efficient zero-knowledge proofs and elliptic curve cryptography. In particular, the thesis presents three novel privacy-friendly authentication schemes for access control and one for data collection application scenarios. The first scheme supports distributed multi-device authentication with multiple Radio-Frequency IDentification (RFID) user’s devices. This feature is particularly important in applications for controlling access to dangerous areas where the presence of protective equipment is checked during each access control session. The other two presented schemes use attribute-based approach to protect user’s privacy, i.e. these schemes allow users to anonymously prove the ownership of their attributes, such as age, citizenship, and gender. While one of our scheme brings efficient revocation and identification mechanisms, the other one provides the fastest authentication phase among the current state of the art solutions. The last (fourth) proposed scheme is a novel short group signature scheme for data collection scenarios. Data collection schemes are used for secure and reliable data transfer from multiple remote nodes to a central unit. With the increasing importance of smart meters in energy distribution, smart house installations and various sensor networks, the need for secure data collection schemes becomes very urgent. Such schemes must provide standard security features, such as confidentiality and authenticity of transferred data, as well as novel features, such as strong protection of user’s privacy and identification of malicious users. The proposed schemes are provably secure and provide the full set of privacy-enhancing features, namely anonymity, untraceability and unlinkability of users. Besides the full cryptographic specification and security analysis, we also show the results of our implementations on devices commonly used in access control and data collection applications.

    Practical backward unlinkable revocation in FIDO, German e-ID, Idemix and U-Prove

    Get PDF
    FIDO, German e-ID, Idemix and U-Prove constitute privacy-enhanced public-key infrastructures allowing users to authenticate in an anonymous way. This however hampers timely revocation in a privacy friendly way. From a legal perspective, revocation typically should be effective within 24 hours after user reporting. It should also be backward unlinkable, i.e. user anonymity cannot be removed after revocation. We describe a new, generic revocation mechanism based on pairing based encryption and apply it to supplement the systems mentioned. This allows for both flexible and privacy friendly revocation. Protocol execution takes less than a quarter of a second on modern smartcards. An additional property is that usage after revocation is linkable, allowing users to identify fraudulent usage after revocation. Our technique is the first Verifier Local Revocation scheme with backwards unlinkable revocation for the systems mentioned. This also allows for a setup resembling the well-known Online Certificate Status Protocol (OCSP). Here the service provider sends a pseudonym to a revocation provider that returns its status. As the information required for this is not secret the status service can be distributed over many cloud services. In addition to the status service our technique also supports the publication of a central revocation list

    Fast Keyed-Verification Anonymous Credentials on Standard Smart Cards

    Get PDF
    Cryptographic anonymous credential schemes allow users to prove their personal attributes, such as age, nationality, or the validity of a ticket or a pre-paid pass, while preserving their privacy, as such proofs are unlinkable and attributes can be selectively disclosed. Recently, Chase et al. (CCS 2014) observe that in such systems, a typical setup is that the credential issuer also serves as the verifier. They introduce keyed-verification credentials that are tailored to this setting. In this paper, we present a novel keyed-verification credential system designed for lightweight devices (primarily smart cards) and prove its security. By using a novel algebraic MAC based on Boneh-Boyen signatures, we achieve the most efficient proving protocol compared to existing schemes. To demonstrate the practicality of our scheme in real applications, including large-scale services such as public transportation or e-government, we present an implementation on a standard, off-the-shelf, Multos smart card. While using significantly higher security parameters than most existing implementations, we achieve performance that is more than 44 % better than the current state-of-the-art implementation

    Privacy-preserving PKI design based on group signature

    Get PDF
    Nowadays, Internet becomes a part of our life. We can make use of numerous services with personal computer, Lap-top, tablet, smart phone or smart TV. These devices with network make us enjoy ubiquitous computing life. Sometimes, on-line services request us authentication or identification for access control and authorization, and PKI technology is widely used because of its security. However the possibility of privacy invasion will increase, if We’re identified with same certificate in many services and these identification data are accumulated. For privacy-preserving authentication or anonymous authentication, there have been many researches such as Group signatures, anonymous credentials, etc. Among these researches, group signatures are very practical Because they provide unlinkability and traceability as well as anonymity. In this paper, we propose a privacy-preserving PKI based on group signature, with which users’ privacy can be Kept in services. Because of traceability, their identities can be traced if they abuse anonymity such as cybercrime. Moreover, we will also discuss open issues for further studies

    Privacy-preserving security solution for cloud services

    Get PDF
    AbstractWe propose a novel privacy-preserving security solution for cloud services. Our solution is based on an efficient non-bilinear group signature scheme providing the anonymous access to cloud services and shared storage servers. The novel solution offers anonymous authenticationfor registered users. Thus, users' personal attributes (age, valid registration, successful payment) can be proven without revealing users' identity, and users can use cloud services without any threat of profiling their behavior. However, if a user breaks provider's rules, his access right is revoked. Our solution provides anonymous access, unlinkability and the confidentiality of transmitted data. We implement our solution as a proof of concept applicationand present the experimental results. Further, we analyzecurrent privacy preserving solutions for cloud services and group signature schemes as basic parts of privacy enhancing solutions in cloud services. We compare the performance of our solution with the related solutionsand schemes

    Authentication Protocols and Privacy Protection

    Get PDF
    Tato dizertační práce se zabývá kryptografickými prostředky pro autentizaci. Hlavním tématem však nejsou klasické autentizační protokoly, které nabízejí pouze ověření identity, ale tzv. atributové autentizační systémy, pomocí kterých mohou uživatelé prokazovat svoje osobní atributy. Tyto atributy pak mohou představovat jakékoliv osobní informace, např. věk, národnost či místo narození. Atributy mohou být prokazovány anonymně a s podporou mnoha funkcí na ochranu digitální identity. Mezi takové funkce patří např. nespojitelnost autentizačních relací, nesledovatelnost, možnost výběru prokazovaných atributů či efektivní revokace. Atributové autentizační systémy jsou již nyní považovány za nástupce současných systémů v oficiálních strategických plánech USA (NSTIC) či EU (ENISA). Část požadovaných funkcí je již podporována existujícími kryptografickými koncepty jako jsou U-Prove či idemix. V současné době však není známý systém, který by poskytoval všechny potřebné funkce na ochranu digitální identity a zároveň byl prakticky implementovatelný na zařízeních, jako jsou čipové karty. Mezi klíčové slabiny současných systémů patří především chybějící nespojitelnost relací a absence revokace. Není tak možné efektivně zneplatnit zaniklé uživatele, ztracené či ukradené autentizační karty či karty škodlivých uživatelů. Z těchto důvodů je v této práci navrženo kryptografické schéma, které řeší slabiny nalezené při analýze existujících řešení. Výsledné schéma, jehož návrh je založen na ověřených primitivech, jako jsou Σ\Sigma-protokoly pro důkazy znalostí, kryptografické závazky či ověřitelné šifrování, pak podporuje všechny požadované vlastnosti pro ochranu soukromí a digitální identity. Zároveň je však návrh snadno implementovatelný v prostředí smart-karet. Tato práce obsahuje plný kryptografický návrh systému, formální ověření klíčových vlastností, matematický model schématu v programu Mathematica pro ověření funkčnosti a výsledky experimentální implementace v prostředí .NET smart-karet. I přesto, že navrhovaný systém obsahuje podporu všech funkcí na ochranu soukromí, včetně těch, které chybí u existujících systémů, jeho výpočetní složitost zůstává stejná či nižší, doba ověření uživatele je tedy kratší než u existujících systémů. Výsledkem je schéma, které může velmi znatelně zvýšit ochranu soukromí uživatelů při jejich ověřování, především při využití v elektronických dokladech, přístupových systémech či Internetových službách.This dissertation thesis deals with the cryptographic constructions for user authentication. Rather than classical authentication protocols which allow only the identity verification, the attribute authentication systems are the main topic of this thesis. The attribute authentication systems allow users to give proofs about the possession of personal attributes. These attributes can represent any personal information, for example age, nationality or birthplace. The attribute ownership can be proven anonymously and with the support of many features for digital identity protection. These features include, e.g., the unlinkability of verification sessions, untraceability, selective disclosure of attributes or efficient revocation. Currently, the attribute authentication systems are considered to be the successors of existing authentication systems by the official strategies of USA (NSTIC) and EU (ENISA). The necessary features are partially provided by existing cryptographic concepts like U-Prove and idemix. But at this moment, there is no system providing all privacy-enhancing features which is implementable on computationally restricted devices like smart-cards. Among all weaknesses of existing systems, the missing unlinkability of verification sessions and the absence of practical revocation are the most critical ones. Without these features, it is currently impossible to invalidate expired users, lost or stolen authentication cards and cards of malicious users. Therefore, a new cryptographic scheme is proposed in this thesis to fix the weaknesses of existing schemes. The resulting scheme, which is based on established primitives like Σ\Sigma-protocols for proofs of knowledge, cryptographic commitments and verifiable encryption, supports all privacy-enhancing features. At the same time, the scheme is easily implementable on smart-cards. This thesis includes the full cryptographic specification, the formal verification of key properties, the mathematical model for functional verification in Mathematica software and the experimental implementation on .NET smart-cards. Although the scheme supports all privacy-enhancing features which are missing in related work, the computational complexity is the same or lower, thus the time of verification is shorter than in existing systems. With all these features and properties, the resulting scheme can significantly improve the privacy of users during their verification, especially when used in electronic ID systems, access systems or Internet services.
    corecore