30 research outputs found

    Smart Passive Localization Using Time Difference of Arrival

    Get PDF
    A smart passive localization system using time difference of arrival (TDoA) measurements is designed and analyzed with the goal of providing the position information for the construction of frequency allocation maps

    Parametric Radio Channel Estimation and Robust Localization

    Get PDF

    Indoor Localization Using Wi-Fi Signals

    Get PDF
    RÉSUMÉ Plusieurs approches ont été développées pour localiser des appareils mobiles à l'intérieur de bâtiments d’une façon précise. Certaines donnent une précision de moins d'un mètre, mais elles nécessitent des infrastructures et du matériel spécifiques. D'autres utilisent une infrastructure qui est déjà déployée, mais donnent une position avec une précision inférieure. Dans ce mémoire, nous proposons plusieurs méthodes de positionnement basées sur les mesures de l'intensité du signal reçu d'une infrastructure Wi-Fi existant. Le but de ces méthodes de positionnement est de localiser le plus précisément possible l'emplacement du dispositif mobile utilisé. La première méthode de positionnement que nous proposons transforme la puissance du signal reçue en une entité appelée signature. Cette entité caractérise chaque emplacement de l'environnement où la localisation doit être effectuée. Pour localiser l'appareil mobile, la signature calculée est jumelée avec les signatures de référence les plus représentatives et qui sont déjà enregistrées dans une base de données. Dans ce mémoire, nous proposons deux approches pour produire les signatures de référence: une empirique et une théorique. La deuxième méthode de positionnement que nous proposons dans ce mémoire est de localiser les appareils mobiles en utilisant la différence entre les mesures de puissance de signaux reçus. On a appelé cette méthode la différence de puissances des signaux reçues (RSSD). Cette méthode consiste à convertir la différence de puissances des signaux reçues en des distances et d’utiliser ces distances pour estimer la position des appareils mobiles. Ensuite, nous décrivons les expériences qui nous ont conduits à développer la méthode de traitement du signal et les algorithmes de localisation. Les algorithmes et les méthodes proposés ont conduit à un système de localisation précis qui atteint 2 mètres de précision dans 90% des cas. Les résultats actuels des systèmes proposés montrent que les emplacements estimés sont précis (moins de 2 mètres) dans un environnement fermé en utilisant la méthode des signatures et une localisation précise dans les espaces ouverts en utilisant la méthode de la RSSD. Certains endroits critiques ont besoin de plus de collecte de données et plus d'informations sur l'environnement pour atteindre le même niveau de précision. Les résultats obtenus sont décrits et discutés à l’aide de cartes et de statistiques.----------ABSTRACT Several approaches have been developed to provide an accurate estimation of the position of mobile devices inside buildings. Some of them give a precision of less than one meter but they require special infrastructure and materials. Some others use an infrastructure that is already deployed but gives a position with lower precision. In this thesis, we propose several positioning methods based on the received signal strength (RSS) measurements of an existing Wi-Fi infrastructure. The aim of these positioning methods is to locate a mobile device as accurately as possible. The first method that we propose transforms the RSS to an entity called signature. This entity characterises each location of the environment where the localization should be performed. This computed signature is matched with the most representative reference signatures already recorded in a database in order to locate the mobile device. In this thesis, we propose two approaches to produce the reference signatures: an empirical and a theoretical one. The second method that we propose in this thesis is about locating the mobile devices using the difference between the received signals strength measurements. We call this method the received signal strength difference (RSSD) method. We then describe the experiments that led us to develop the signal processing method and the localization algorithms. The algorithm proposed led to an accurate localization system that reaches 2 meters of accuracy in 90% of the cases. Current results of the proposed systems show that the estimated locations are accurate (less than 2 meters) in closed environments when using the fingerprinting method and in open spaces when using the RSSD method. Some critical locations need more collected data and more information about the environment to reach the same level of accuracy. The results obtained are described and discussed using maps and statistics

    Robust Localization for Mixed LOS/NLOS Environments With Anchor Uncertainties

    Get PDF
    Localization is particularly challenging when the environment has mixed line-of-sight (LOS) and non-LOS paths and even more challenging if the anchors’ positions are also uncertain. In the situations in which the parameters of the LOS-NLOS propagation error model and the channel states are unknown and uncertainties for the anchors exist, the likelihood function of a localizing node is computationally intractable. In this paper, assuming the knowledge of the prior distributions of the error model parameters and that of the channel states, we formulate the localization problem as the maximization problem of the posterior distribution of the localizing node. Then we apply variational distributions and importance sampling to approximate the true posterior distributions and estimate the target’s location using an asymptotic minimum mean-square-error (MMSE) estimator. Furthermore, we analyze the convergence and complexity of the proposed variational Bayesian localization (VBL) algorithm. Computer simulation results demonstrate that the proposed algorithm can approach the performance of the Bayesian Cramer-Rao bound (BCRB) and outperforms conventional algorithm

    Bounds on RF cooperative localization for video capsule endoscopy

    Get PDF
    Wireless video capsule endoscopy has been in use for over a decade and it uses radio frequency (RF) signals to transmit approximately fifty five thousands clear pictures of inside the GI tract to the body-mounted sensor array. However, physician has no clue on the exact location of the capsule inside the GI tract to associate it with the pictures showing abnormalities such as bleeding or tumors. It is desirable to use the same RF signal for localization of the VCE as it passes through the human GI tract. In this thesis, we address the accuracy limits of RF localization techniques for VCE localization applications. We present an assessment of the accuracy of cooperative localization of VCE using radio frequency (RF) signals with particular emphasis on localization inside the small intestine. We derive the Cramer-Rao Lower Bound (CRLB) for cooperative location estimators using the received signal strength(RSS) or the time of arrival (TOA) of the RF signal. Our derivations are based on a three-dimension human body model, an existing model for RSS propagation from implant organs to body surface and a TOA ranging error model for the effects of non-homogenity of the human body on TOA of the RF signals. Using models for RSS and TOA errors, we first calculate the 3D CRLB bounds for cooperative localization of the VCE in three major digestive organs in the path of GI tract: the stomach, the small intestine and the large intestine. Then we analyze the performance of localization techniques on a typical path inside the small intestine. Our analysis includes the effects of number of external sensors, the external sensor array topology, number of VCE in cooperation and the random variations in transmit power from the capsule

    Bandwidth scaling behavior in wireless systems : theory, experimentation, and performance analysis

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 167-174).The need for ubiquitous wireless services has prompted the exploration of using increasingly larger transmission bandwidths often in environments with harsh propagation conditions. However, present analyses do not capture the behavior of systems in these channels as the bandwidth changes. This thesis: describes the development of an automated measurement apparatus capable of characterizing wideband channels up to 16 GHz; formulates a framework for evaluating the performance of wireless systems in realistic propagation environments; and applies this framework to sets of channel realizations collected during a comprehensive measurement campaign. In particular, the symbol error probability of realistic wideband subset diversity (SSD) systems, as well as improved lower bounds on time-of-arrival (TOA) estimation are derived and evaluated using experimental data at a variety of bandwidths. These results provide insights into how the performance of wireless systems scales as a function of bandwidth. Experimental data is used to quantify the behavior of channel resolvability as a function of bandwidth. The results show that there are significant differences in the amount of energy captured by a wideband SSD combiner under different propagation conditions. In particular, changes in the number of combined paths affect system performance more significantly in non-line-of-sight conditions than in line-of-sight conditions. Results also indicate that, for a fixed number of combined paths, lower bandwidths may provide better performance because a larger portion of the available energy is captured at those bandwidths. The expressions for lower bounds on TOA estimation, developed based on the Ziv-Zakai bound (ZZB), are able to account for the a priori information about the TOA as well as statistical information regarding the multipath phenomena. The ZZB, evaluated using measured channel realizations, shows the presence of an ambiguity region for moderate signal-to-noise ratios (SNRs). It is shown that in a variety of propagation conditions, this ambiguity region diminishes as bandwidth increases. Results indicate that decreases in the root mean square error for TOA estimation were significant for bandwidths up to approximately 8 GHz for SNRs in this region.by Wesley M. Gifford.Ph.D

    Information Fusion for 5G IoT: An Improved 3D Localisation Approach Using K-DNN and Multi-Layered Hybrid Radiomap

    Get PDF
    Indoor positioning is a core enabler for various 5G identity and context-aware applications requiring precise and real-time simultaneous localisation and mapping (SLAM). In this work, we propose a K-nearest neighbours and deep neural network (K-DNN) algorithm to improve 3D indoor positioning. Our implementation uses a novel data-augmentation concept for the received signal strength (RSS)-based fingerprint technique to produce a 3D fused hybrid. In the offline phase, a machine learning (ML) approach is used to train a model on a radiomap dataset that is collected during the offline phase. The proposed algorithm is implemented on the constructed hybrid multi-layered radiomap to improve the 3D localisation accuracy. In our implementation, the proposed approach is based on the fusion of the prominent 5G IoT signals of Bluetooth Low Energy (BLE) and the ubiquitous WLAN. As a result, we achieved a 91% classification accuracy in 1D and a submeter accuracy in 2D
    corecore