1,028 research outputs found

    Chaotic dynamical systems associated with tilings of RN\R^N

    Get PDF
    In this chapter, we consider a class of discrete dynamical systems defined on the homogeneous space associated with a regular tiling of RN\R^N, whose most familiar example is provided by the N−N-dimensional torus \T ^N. It is proved that any dynamical system in this class is chaotic in the sense of Devaney, and that it admits at least one positive Lyapunov exponent. Next, a chaos-synchronization mechanism is introduced and used for masking information in a communication setup

    Secure Digital Communication based on Hybrid Dynamical Systems

    Get PDF
    International audienceIn this work, a transmission scheme based on the hybrid and chaotic dynamics for private communications is proposed. The transmitter is composed of a continuoustime system and a discrete-time system in which the message is inserted by inclusion. The states of the continuous system are also included, after sampling, in the discrete system. The receiver is composed of a discrete-time delay observer and a continuous-time observer. The principle of the proposed hybrid method is to show that the reconstruction of discrete states of the receiver and the message passes at first by a synchronization of the two continuous-time chaotic systems. This new strategy makes the system of transmission robust, in particular against an attack known plaintext. Simulation results are presented to highlight the performances of the proposed method

    Self-synchronizing stream ciphers and dynamical systems: state of the art and open issues

    No full text
    International audienceDynamical systems play a central role in the design of symmetric cryptosystems. Their use has been widely investigated both in ''chaos-based'' private communications and in stream ciphers over finite fields. In the former case, they get the form of automata named as Moore or Mealy machines. The main charateristic of stream ciphers lies in that they require synchronization of complex sequences generated by the dynamical systems involved at the transmitter and the receiver part. In this paper, we focus on a special class of symmetric ciphers, namely the Self-Synchronizing Stream Ciphers. Indeed, such ciphers have not been seriously explored so far although they get interesting properties of synchronization which could make them very appealing in practice. We review and compare different design approaches which have been proposed in the open literature and fully-specified algorithms are detailed for illustration purpose. Open issues related to the validation and the implementation of Self-Synchronizing Stream Ciphers are developped. We highlight the reason why some concepts borrowed from control theory appear to be useful to this end

    Design and Implementation of Secure Chaotic Communication Systems

    Get PDF
    Chaotic systems have properties such as ergodicity, sensitivity to initial conditions/parameter mismatches, mixing property, deterministic dynamics, structure complexity, to mention a few, that map nicely with cryptographic requirements such as confusion, diffusion, deterministic pseudorandomness, algorithm complexity. Furthermore, the possibility of chaotic synchronization, where the master system (transmitter) is driving the slave system (receiver) by its output signal, made it probable for the possible utilization of chaotic systems to implement security in the communication systems. Many methods like chaotic masking, chaotic modulation, inclusion, chaotic shift keying (CSK) had been proposed however, many attack methods later showed them to be insecure. Different modifications of these methods also exist in the literature to improve the security, but almost all suffer from the same drawback. Therefore, the implementation of chaotic systems in security still remains a challenge. In this work, different possibilities on how it might be possible to improve the security of the existing methods are explored. The main problem with the existing methods is that the message imprint could be found in the dynamics of the transmitted signal, therefore by some signal processing or pattern classification techniques, etc, allow the exposition of the hidden message. Therefore, the challenge is to remove any pattern or change in dynamics that the message might bring in the transmitted signal

    Computational universes

    Full text link
    Suspicions that the world might be some sort of a machine or algorithm existing ``in the mind'' of some symbolic number cruncher have lingered from antiquity. Although popular at times, the most radical forms of this idea never reached mainstream. Modern developments in physics and computer science have lent support to the thesis, but empirical evidence is needed before it can begin to replace our contemporary world view.Comment: Several corrections of typos and smaller revisions, final versio

    Design and implementation of secure chaotic communication systems

    Get PDF
    Chaotic systems have properties such as ergodicity, sensitivity to initial conditions/parameter mismatches, mixing property, deterministic dynamics, structure complexity, to mention a few, that map nicely with cryptographic requirements such as confusion, diffusion, deterministic pseudorandomness, algorithm complexity. Furthermore, the possibility of chaotic synchronization, where the master system (transmitter) is driving the slave system (receiver) by its output signal, made it probable for the possible utilization of chaotic systems to implement security in the communication systems. Many methods like chaotic masking, chaotic modulation, inclusion, chaotic shift keying (CSK) had been proposed however, many attack methods later showed them to be insecure. Different modifications of these methods also exist in the literature to improve the security, but almost all suffer from the same drawback. Therefore, the implementation of chaotic systems in security still remains a challenge. In this work, different possibilities on how it might be possible to improve the security of the existing methods are explored. The main problem with the existing methods is that the message imprint could be found in the dynamics of the transmitted signal, therefore by some signal processing or pattern classification techniques, etc, allow the exposition of the hidden message. Therefore, the challenge is to remove any pattern or change in dynamics that the message might bring in the transmitted signal.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Self-synchronizing stream ciphers and dynamical systems: state of the art and open issues

    Get PDF
    Dynamical systems play a central role in the design of symmetric cryptosystems. Their use has been widely investigated both in "chaos-based" private communications and in stream ciphers over finite fields. In the former case, they get the form of automata named as Moore or Mealy machines. The main charateristic of stream ciphers lies in that they require synchronization of complex sequences generated by the dynamical systems involved at the transmitter and the receiver part. In this paper, we focus on a special class of symmetric ciphers, namely the SelfSynchronizing Stream Ciphers. Indeed, such ciphers have not been seriously explored so far although they get interesting properties of synchronization which could make them very appealing in practice. We review and compare different design approaches which have been proposed in the open literature and fully-specified algorithms are detailed for illustration purpose. Open issues related to the validation and the implementation of Self-Synchronizing Stream Ciphers are developped. We highlight the reason why some concepts borrowed from control theory appear to be useful to this end

    Recent Advances in Signal Processing

    Get PDF
    The signal processing task is a very critical issue in the majority of new technological inventions and challenges in a variety of applications in both science and engineering fields. Classical signal processing techniques have largely worked with mathematical models that are linear, local, stationary, and Gaussian. They have always favored closed-form tractability over real-world accuracy. These constraints were imposed by the lack of powerful computing tools. During the last few decades, signal processing theories, developments, and applications have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This book is targeted primarily toward both students and researchers who want to be exposed to a wide variety of signal processing techniques and algorithms. It includes 27 chapters that can be categorized into five different areas depending on the application at hand. These five categories are ordered to address image processing, speech processing, communication systems, time-series analysis, and educational packages respectively. The book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    Novel Yinger Learning Variable Universe Fuzzy Controller

    Get PDF

    Symmetry in Chaotic Systems and Circuits

    Get PDF
    Symmetry can play an important role in the field of nonlinear systems and especially in the design of nonlinear circuits that produce chaos. Therefore, this Special Issue, titled “Symmetry in Chaotic Systems and Circuits”, presents the latest scientific advances in nonlinear chaotic systems and circuits that introduce various kinds of symmetries. Applications of chaotic systems and circuits with symmetries, or with a deliberate lack of symmetry, are also presented in this Special Issue. The volume contains 14 published papers from authors around the world. This reflects the high impact of this Special Issue
    • 

    corecore