68 research outputs found

    TRECVID 2007 - Overview

    Get PDF

    TRECVID 2008 - goals, tasks, data, evaluation mechanisms and metrics

    Get PDF
    The TREC Video Retrieval Evaluation (TRECVID) 2008 is a TREC-style video analysis and retrieval evaluation, the goal of which remains to promote progress in content-based exploitation of digital video via open, metrics-based evaluation. Over the last 7 years this effort has yielded a better understanding of how systems can effectively accomplish such processing and how one can reliably benchmark their performance. In 2008, 77 teams (see Table 1) from various research organizations --- 24 from Asia, 39 from Europe, 13 from North America, and 1 from Australia --- participated in one or more of five tasks: high-level feature extraction, search (fully automatic, manually assisted, or interactive), pre-production video (rushes) summarization, copy detection, or surveillance event detection. The copy detection and surveillance event detection tasks are being run for the first time in TRECVID. This paper presents an overview of TRECVid in 2008

    Visual Concept Detection in Images and Videos

    Get PDF
    The rapidly increasing proliferation of digital images and videos leads to a situation where content-based search in multimedia databases becomes more and more important. A prerequisite for effective image and video search is to analyze and index media content automatically. Current approaches in the field of image and video retrieval focus on semantic concepts serving as an intermediate description to bridge the “semantic gap” between the data representation and the human interpretation. Due to the large complexity and variability in the appearance of visual concepts, the detection of arbitrary concepts represents a very challenging task. In this thesis, the following aspects of visual concept detection systems are addressed: First, enhanced local descriptors for mid-level feature coding are presented. Based on the observation that scale-invariant feature transform (SIFT) descriptors with different spatial extents yield large performance differences, a novel concept detection system is proposed that combines feature representations for different spatial extents using multiple kernel learning (MKL). A multi-modal video concept detection system is presented that relies on Bag-of-Words representations for visual and in particular for audio features. Furthermore, a method for the SIFT-based integration of color information, called color moment SIFT, is introduced. Comparative experimental results demonstrate the superior performance of the proposed systems on the Mediamill and on the VOC Challenge. Second, an approach is presented that systematically utilizes results of object detectors. Novel object-based features are generated based on object detection results using different pooling strategies. For videos, detection results are assembled to object sequences and a shot-based confidence score as well as further features, such as position, frame coverage or movement, are computed for each object class. These features are used as additional input for the support vector machine (SVM)-based concept classifiers. Thus, other related concepts can also profit from object-based features. Extensive experiments on the Mediamill, VOC and TRECVid Challenge show significant improvements in terms of retrieval performance not only for the object classes, but also in particular for a large number of indirectly related concepts. Moreover, it has been demonstrated that a few object-based features are beneficial for a large number of concept classes. On the VOC Challenge, the additional use of object-based features led to a superior performance for the image classification task of 63.8% mean average precision (AP). Furthermore, the generalization capabilities of concept models are investigated. It is shown that different source and target domains lead to a severe loss in concept detection performance. In these cross-domain settings, object-based features achieve a significant performance improvement. Since it is inefficient to run a large number of single-class object detectors, it is additionally demonstrated how a concurrent multi-class object detection system can be constructed to speed up the detection of many object classes in images. Third, a novel, purely web-supervised learning approach for modeling heterogeneous concept classes in images is proposed. Tags and annotations of multimedia data in the WWW are rich sources of information that can be employed for learning visual concepts. The presented approach is aimed at continuous long-term learning of appearance models and improving these models periodically. For this purpose, several components have been developed: a crawling component, a multi-modal clustering component for spam detection and subclass identification, a novel learning component, called “random savanna”, a validation component, an updating component, and a scalability manager. Only a single word describing the visual concept is required to initiate the learning process. Experimental results demonstrate the capabilities of the individual components. Finally, a generic concept detection system is applied to support interdisciplinary research efforts in the field of psychology and media science. The psychological research question addressed in the field of behavioral sciences is, whether and how playing violent content in computer games may induce aggression. Therefore, novel semantic concepts most notably “violence” are detected in computer game videos to gain insights into the interrelationship of violent game events and the brain activity of a player. Experimental results demonstrate the excellent performance of the proposed automatic concept detection approach for such interdisciplinary research

    TRECVID 2009 - goals, tasks, data, evaluation mechanisms and metrics

    Get PDF
    The TREC Video Retrieval Evaluation (TRECVID) 2009 was a TREC-style video analysis and retrieval evaluation, the goal of which was to promote progress in content-based exploitation of digital video via open, metrics-based evaluation. Over the last 9 years TRECVID has yielded a better understanding of how systems can effectively accomplish such processing and how one can reliably benchmark their performance. 63 teams from various research organizations — 28 from Europe, 24 from Asia, 10 from North America, and 1 from Africa — completed one or more of four tasks: high-level feature extraction, search (fully automatic, manually assisted, or interactive), copy detection, or surveillance event detection. This paper gives an overview of the tasks, data used, evaluation mechanisms and performanc

    Video Content Understanding Using Text

    Get PDF
    The rise of the social media and video streaming industry provided us a plethora of videos and their corresponding descriptive information in the form of concepts (words) and textual video captions. Due to the mass amount of available videos and the textual data, today is the best time ever to study the Computer Vision and Machine Learning problems related to videos and text. In this dissertation, we tackle multiple problems associated with the joint understanding of videos and text. We first address the task of multi-concept video retrieval, where the input is a set of words as concepts, and the output is a ranked list of full-length videos. This approach deals with multi-concept input and prolonged length of videos by incorporating multi-latent variables to tie the information within each shot (short clip of a full-video) and across shots. Secondly, we address the problem of video question answering, in which, the task is to answer a question, in the form of Fill-In-the-Blank (FIB), given a video. Answering a question is a task of retrieving a word from a dictionary (all possible words suitable for an answer) based on the input question and video. Following the FIB problem, we introduce a new problem, called Visual Text Correction (VTC), i.e., detecting and replacing an inaccurate word in the textual description of a video. We propose a deep network that can simultaneously detect an inaccuracy in a sentence while benefiting 1D-CNNs/LSTMs to encode short/long term dependencies, and fix it by replacing the inaccurate word(s). Finally, as the last part of the dissertation, we propose to tackle the problem of video generation using user input natural language sentences. Our proposed video generation method constructs two distributions out of the input text, corresponding to the first and last frames latent representations. We generate high-fidelity videos by interpolating latent representations and a sequence of CNN based up-pooling blocks

    Learning Hierarchical Representations For Video Analysis Using Deep Learning

    Get PDF
    With the exponential growth of the digital data, video content analysis (e.g., action, event recognition) has been drawing increasing attention from computer vision researchers. Effective modeling of the objects, scenes, and motions is critical for visual understanding. Recently there has been a growing interest in the bio-inspired deep learning models, which has shown impressive results in speech and object recognition. The deep learning models are formed by the composition of multiple non-linear transformations of the data, with the goal of yielding more abstract and ultimately more useful representations. The advantages of the deep models are three fold: 1) They learn the features directly from the raw signal in contrast to the hand-designed features. 2) The learning can be unsupervised, which is suitable for large data where labeling all the data is expensive and unpractical. 3) They learn a hierarchy of features one level at a time and the layerwise stacking of feature extraction, this often yields better representations. However, not many deep learning models have been proposed to solve the problems in video analysis, especially videos “in a wild”. Most of them are either dealing with simple datasets, or limited to the low-level local spatial-temporal feature descriptors for action recognition. Moreover, as the learning algorithms are unsupervised, the learned features preserve generative properties rather than the discriminative ones which are more favorable in the classification tasks. In this context, the thesis makes two major contributions. First, we propose several formulations and extensions of deep learning methods which learn hierarchical representations for three challenging video analysis tasks, including complex event recognition, object detection in videos and measuring action similarity. The proposed methods are extensively demonstrated for each work on the state-of-the-art challenging datasets. Besides learning the low-level local features, higher level representations are further designed to be learned in the context of applications. The data-driven concept representations and sparse representation of the events are learned for complex event recognition; the representations for object body parts iii and structures are learned for object detection in videos; and the relational motion features and similarity metrics between video pairs are learned simultaneously for action verification. Second, in order to learn discriminative and compact features, we propose a new feature learning method using a deep neural network based on auto encoders. It differs from the existing unsupervised feature learning methods in two ways: first it optimizes both discriminative and generative properties of the features simultaneously, which gives our features a better discriminative ability. Second, our learned features are more compact, while the unsupervised feature learning methods usually learn a redundant set of over-complete features. Extensive experiments with quantitative and qualitative results on the tasks of human detection and action verification demonstrate the superiority of our proposed models

    Applying semantic web technologies to knowledge sharing in aerospace engineering

    Get PDF
    This paper details an integrated methodology to optimise Knowledge reuse and sharing, illustrated with a use case in the aeronautics domain. It uses Ontologies as a central modelling strategy for the Capture of Knowledge from legacy docu-ments via automated means, or directly in systems interfacing with Knowledge workers, via user-defined, web-based forms. The domain ontologies used for Knowledge Capture also guide the retrieval of the Knowledge extracted from the data using a Semantic Search System that provides support for multiple modalities during search. This approach has been applied and evaluated successfully within the aerospace domain, and is currently being extended for use in other domains on an increasingly large scale

    The THUMOS Challenge on Action Recognition for Videos "in the Wild"

    Get PDF
    Automatically recognizing and localizing wide ranges of human actions has crucial importance for video understanding. Towards this goal, the THUMOS challenge was introduced in 2013 to serve as a benchmark for action recognition. Until then, video action recognition, including THUMOS challenge, had focused primarily on the classification of pre-segmented (i.e., trimmed) videos, which is an artificial task. In THUMOS 2014, we elevated action recognition to a more practical level by introducing temporally untrimmed videos. These also include `background videos' which share similar scenes and backgrounds as action videos, but are devoid of the specific actions. The three editions of the challenge organized in 2013--2015 have made THUMOS a common benchmark for action classification and detection and the annual challenge is widely attended by teams from around the world. In this paper we describe the THUMOS benchmark in detail and give an overview of data collection and annotation procedures. We present the evaluation protocols used to quantify results in the two THUMOS tasks of action classification and temporal detection. We also present results of submissions to the THUMOS 2015 challenge and review the participating approaches. Additionally, we include a comprehensive empirical study evaluating the differences in action recognition between trimmed and untrimmed videos, and how well methods trained on trimmed videos generalize to untrimmed videos. We conclude by proposing several directions and improvements for future THUMOS challenges.Comment: Preprint submitted to Computer Vision and Image Understandin
    • …
    corecore