256 research outputs found

    Composable Security in the Bounded-Quantum-Storage Model

    Full text link
    We present a simplified framework for proving sequential composability in the quantum setting. In particular, we give a new, simulation-based, definition for security in the bounded-quantum-storage model, and show that this definition allows for sequential composition of protocols. Damgard et al. (FOCS '05, CRYPTO '07) showed how to securely implement bit commitment and oblivious transfer in the bounded-quantum-storage model, where the adversary is only allowed to store a limited number of qubits. However, their security definitions did only apply to the standalone setting, and it was not clear if their protocols could be composed. Indeed, we first give a simple attack that shows that these protocols are not composable without a small refinement of the model. Finally, we prove the security of their randomized oblivious transfer protocol in our refined model. Secure implementations of oblivious transfer and bit commitment then follow easily by a (classical) reduction to randomized oblivious transfer.Comment: 21 page

    Duality of privacy amplification against quantum adversaries and data compression with quantum side information

    Full text link
    We show that the tasks of privacy amplification against quantum adversaries and data compression with quantum side information are dual in the sense that the ability to perform one implies the ability to perform the other. These are two of the most important primitives in classical information theory, and are shown to be connected by complementarity and the uncertainty principle in the quantum setting. Applications include a new uncertainty principle formulated in terms of smooth min- and max-entropies, as well as new conditions for approximate quantum error correction.Comment: v2: Includes a derivation of an entropic uncertainty principle for smooth min- and max-entropies. Discussion of the Holevo-Schumacher-Westmoreland theorem remove

    The Bounded Storage Model in The Presence of a Quantum Adversary

    Get PDF
    An extractor is a function E that is used to extract randomness. Given an imperfect random source X and a uniform seed Y, the output E(X,Y) is close to uniform. We study properties of such functions in the presence of prior quantum information about X, with a particular focus on cryptographic applications. We prove that certain extractors are suitable for key expansion in the bounded storage model where the adversary has a limited amount of quantum memory. For extractors with one-bit output we show that the extracted bit is essentially equally secure as in the case where the adversary has classical resources. We prove the security of certain constructions that output multiple bits in the bounded storage model.Comment: 13 pages Latex, v3: discussion of independent randomizers adde

    Composability in quantum cryptography

    Full text link
    In this article, we review several aspects of composability in the context of quantum cryptography. The first part is devoted to key distribution. We discuss the security criteria that a quantum key distribution protocol must fulfill to allow its safe use within a larger security application (e.g., for secure message transmission). To illustrate the practical use of composability, we show how to generate a continuous key stream by sequentially composing rounds of a quantum key distribution protocol. In a second part, we take a more general point of view, which is necessary for the study of cryptographic situations involving, for example, mutually distrustful parties. We explain the universal composability framework and state the composition theorem which guarantees that secure protocols can securely be composed to larger applicationsComment: 18 pages, 2 figure
    • 

    corecore