1,176 research outputs found

    Budget Feasible Mechanism Design: From Prior-Free to Bayesian

    Full text link
    Budget feasible mechanism design studies procurement combinatorial auctions where the sellers have private costs to produce items, and the buyer(auctioneer) aims to maximize a social valuation function on subsets of items, under the budget constraint on the total payment. One of the most important questions in the field is "which valuation domains admit truthful budget feasible mechanisms with `small' approximations (compared to the social optimum)?" Singer showed that additive and submodular functions have such constant approximations. Recently, Dobzinski, Papadimitriou, and Singer gave an O(log^2 n)-approximation mechanism for subadditive functions; they also remarked that: "A fundamental question is whether, regardless of computational constraints, a constant-factor budget feasible mechanism exists for subadditive functions." We address this question from two viewpoints: prior-free worst case analysis and Bayesian analysis. For the prior-free framework, we use an LP that describes the fractional cover of the valuation function; it is also connected to the concept of approximate core in cooperative game theory. We provide an O(I)-approximation mechanism for subadditive functions, via the worst case integrality gap I of LP. This implies an O(log n)-approximation for subadditive valuations, O(1)-approximation for XOS valuations, and for valuations with a constant I. XOS valuations are an important class of functions that lie between submodular and subadditive classes. We give another polynomial time O(log n/loglog n) sub-logarithmic approximation mechanism for subadditive valuations. For the Bayesian framework, we provide a constant approximation mechanism for all subadditive functions, using the above prior-free mechanism for XOS valuations as a subroutine. Our mechanism allows correlations in the distribution of private information and is universally truthful.Comment: to appear in STOC 201

    Stability and fairness in models with a multiple membership

    Get PDF
    This article studies a model of coalition formation for the joint production (and finance) of public projects, in which agents may belong to multiple coalitions. We show that, if projects are divisible, there always exists a stable (secession-proof) structure, i.e., a structure in which no coalition would reject a proposed arrangement. When projects are in- divisible, stable allocations may fail to exist and, for those cases, we resort to the least core in order to estimate the degree of instability. We also examine the compatibility of stability and fairness on metric environments with indivisible projects. To do so, we explore, among other things, the performance of several well-known solutions (such as the Shapley value, the nucleolus, or the Dutta-Ray value) in these environments.stability, fairness, membership, coalition formation

    Stability and Fairness in Models with a Multiple Membership

    Get PDF
    This article studies a model of coalition formation for the joint production (and finance) of public projects, in which agents may belong to multiple coalitions. We show that, if projects are divisible, there always exists a stable (secession-proof) structure, i.e., a structure in which no coalition would reject a proposed arrangement. When projects are indivisible, stable allocations may fail to exist and, for those cases, we resort to the least core in order to estimate the degree of instability. We also examine the compatibility of stability and fairness in metric environments with indivisible projects, where we also explore the performance of well-known solutions, such as the Shapley value and the nucleolus.Stability, Fairness, Membership, Coalition Formation

    Stability and Fairness in Models with a Multiple Membership

    Get PDF
    This article studies a model of coalition formation for the joint production (and finance) of public projects, in which agents may belong to multiple coalitions. We show that, if projects are divisible, there always exists a stable (secession-proof) structure, i.e., a structure in which no coalition would reject a proposed arrangement. When projects are indivisible, stable allocations may fail to exist and, for those cases, we resort to the least core in order to estimate the degree of instability. We also examine the compatibility of stability and fairness in metric environments with indivisible projects, where we also explore the performance of well-known solutions, such as the Shapley value and the nucleolus.Stability, Fairness, Membership, Coalition Formation

    Dagstuhl Reports : Volume 1, Issue 2, February 2011

    Get PDF
    Online Privacy: Towards Informational Self-Determination on the Internet (Dagstuhl Perspectives Workshop 11061) : Simone Fischer-HĂźbner, Chris Hoofnagle, Kai Rannenberg, Michael Waidner, Ioannis Krontiris and Michael MarhĂśfer Self-Repairing Programs (Dagstuhl Seminar 11062) : Mauro PezzĂŠ, Martin C. Rinard, Westley Weimer and Andreas Zeller Theory and Applications of Graph Searching Problems (Dagstuhl Seminar 11071) : Fedor V. Fomin, Pierre Fraigniaud, Stephan Kreutzer and Dimitrios M. Thilikos Combinatorial and Algorithmic Aspects of Sequence Processing (Dagstuhl Seminar 11081) : Maxime Crochemore, Lila Kari, Mehryar Mohri and Dirk Nowotka Packing and Scheduling Algorithms for Information and Communication Services (Dagstuhl Seminar 11091) Klaus Jansen, Claire Mathieu, Hadas Shachnai and Neal E. Youn

    Sum of Us: Strategyproof Selection from the Selectors

    Full text link
    We consider directed graphs over a set of n agents, where an edge (i,j) is taken to mean that agent i supports or trusts agent j. Given such a graph and an integer k\leq n, we wish to select a subset of k agents that maximizes the sum of indegrees, i.e., a subset of k most popular or most trusted agents. At the same time we assume that each individual agent is only interested in being selected, and may misreport its outgoing edges to this end. This problem formulation captures realistic scenarios where agents choose among themselves, which can be found in the context of Internet search, social networks like Twitter, or reputation systems like Epinions. Our goal is to design mechanisms without payments that map each graph to a k-subset of agents to be selected and satisfy the following two constraints: strategyproofness, i.e., agents cannot benefit from misreporting their outgoing edges, and approximate optimality, i.e., the sum of indegrees of the selected subset of agents is always close to optimal. Our first main result is a surprising impossibility: for k \in {1,...,n-1}, no deterministic strategyproof mechanism can provide a finite approximation ratio. Our second main result is a randomized strategyproof mechanism with an approximation ratio that is bounded from above by four for any value of k, and approaches one as k grows
    • …
    corecore