43,701 research outputs found

    How long does it take to compute the eigenvalues of a random symmetric matrix?

    Get PDF
    We present the results of an empirical study of the performance of the QR algorithm (with and without shifts) and the Toda algorithm on random symmetric matrices. The random matrices are chosen from six ensembles, four of which lie in the Wigner class. For all three algorithms, we observe a form of universality for the deflation time statistics for random matrices within the Wigner class. For these ensembles, the empirical distribution of a normalized deflation time is found to collapse onto a curve that depends only on the algorithm, but not on the matrix size or deflation tolerance provided the matrix size is large enough (see Figure 4, Figure 7 and Figure 10). For the QR algorithm with the Wilkinson shift, the observed universality is even stronger and includes certain non-Wigner ensembles. Our experiments also provide a quantitative statistical picture of the accelerated convergence with shifts.Comment: 20 Figures; Revision includes a treatment of the QR algorithm with shift

    Postselection threshold against biased noise

    Get PDF
    The highest current estimates for the amount of noise a quantum computer can tolerate are based on fault-tolerance schemes relying heavily on postselecting on no detected errors. However, there has been no proof that these schemes give even a positive tolerable noise threshold. A technique to prove a positive threshold, for probabilistic noise models, is presented. The main idea is to maintain strong control over the distribution of errors in the quantum state at all times. This distribution has correlations which conceivably could grow out of control with postselection. But in fact, the error distribution can be written as a mixture of nearby distributions each satisfying strong independence properties, so there are no correlations for postselection to amplify.Comment: 13 pages, FOCS 2006; conference versio

    Universal blind quantum computation

    Get PDF
    We present a protocol which allows a client to have a server carry out a quantum computation for her such that the client's inputs, outputs and computation remain perfectly private, and where she does not require any quantum computational power or memory. The client only needs to be able to prepare single qubits randomly chosen from a finite set and send them to the server, who has the balance of the required quantum computational resources. Our protocol is interactive: after the initial preparation of quantum states, the client and server use two-way classical communication which enables the client to drive the computation, giving single-qubit measurement instructions to the server, depending on previous measurement outcomes. Our protocol works for inputs and outputs that are either classical or quantum. We give an authentication protocol that allows the client to detect an interfering server; our scheme can also be made fault-tolerant. We also generalize our result to the setting of a purely classical client who communicates classically with two non-communicating entangled servers, in order to perform a blind quantum computation. By incorporating the authentication protocol, we show that any problem in BQP has an entangled two-prover interactive proof with a purely classical verifier. Our protocol is the first universal scheme which detects a cheating server, as well as the first protocol which does not require any quantum computation whatsoever on the client's side. The novelty of our approach is in using the unique features of measurement-based quantum computing which allows us to clearly distinguish between the quantum and classical aspects of a quantum computation.Comment: 20 pages, 7 figures. This version contains detailed proofs of authentication and fault tolerance. It also contains protocols for quantum inputs and outputs and appendices not available in the published versio

    Improved magic states distillation for quantum universality

    Full text link
    Given stabilizer operations and the ability to repeatedly prepare a single-qubit mixed state rho, can we do universal quantum computation? As motivation for this question, "magic state" distillation procedures can reduce the general fault-tolerance problem to that of performing fault-tolerant stabilizer circuits. We improve the procedures of Bravyi and Kitaev in the Hadamard "magic" direction of the Bloch sphere to achieve a sharp threshold between those rho allowing universal quantum computation, and those for which any calculation can be efficiently classically simulated. As a corollary, the ability to repeatedly prepare any pure state which is not a stabilizer state (e.g., any single-qubit pure state which is not a Pauli eigenstate), together with stabilizer operations, gives quantum universality. It remains open whether there is also a tight separation in the so-called T direction.Comment: 6 pages, 5 figure

    Universal fault-tolerant gates on concatenated stabilizer codes

    Get PDF
    It is an oft-cited fact that no quantum code can support a set of fault-tolerant logical gates that is both universal and transversal. This no-go theorem is generally responsible for the interest in alternative universality constructions including magic state distillation. Widely overlooked, however, is the possibility of non-transversal, yet still fault-tolerant, gates that work directly on small quantum codes. Here we demonstrate precisely the existence of such gates. In particular, we show how the limits of non-transversality can be overcome by performing rounds of intermediate error-correction to create logical gates on stabilizer codes that use no ancillas other than those required for syndrome measurement. Moreover, the logical gates we construct, the most prominent examples being Toffoli and controlled-controlled-Z, often complete universal gate sets on their codes. We detail such universal constructions for the smallest quantum codes, the 5-qubit and 7-qubit codes, and then proceed to generalize the approach. One remarkable result of this generalization is that any nondegenerate stabilizer code with a complete set of fault-tolerant single-qubit Clifford gates has a universal set of fault-tolerant gates. Another is the interaction of logical qubits across different stabilizer codes, which, for instance, implies a broadly applicable method of code switching.Comment: 18 pages + 5 pages appendix, 12 figure
    corecore