37,760 research outputs found

    Existential witness extraction in classical realizability and via a negative translation

    Full text link
    We show how to extract existential witnesses from classical proofs using Krivine's classical realizability---where classical proofs are interpreted as lambda-terms with the call/cc control operator. We first recall the basic framework of classical realizability (in classical second-order arithmetic) and show how to extend it with primitive numerals for faster computations. Then we show how to perform witness extraction in this framework, by discussing several techniques depending on the shape of the existential formula. In particular, we show that in the Sigma01-case, Krivine's witness extraction method reduces to Friedman's through a well-suited negative translation to intuitionistic second-order arithmetic. Finally we discuss the advantages of using call/cc rather than a negative translation, especially from the point of view of an implementation.Comment: 52 pages. Accepted in Logical Methods for Computer Science (LMCS), 201

    Quantified CTL: Expressiveness and Complexity

    Full text link
    While it was defined long ago, the extension of CTL with quantification over atomic propositions has never been studied extensively. Considering two different semantics (depending whether propositional quantification refers to the Kripke structure or to its unwinding tree), we study its expressiveness (showing in particular that QCTL coincides with Monadic Second-Order Logic for both semantics) and characterise the complexity of its model-checking and satisfiability problems, depending on the number of nested propositional quantifiers (showing that the structure semantics populates the polynomial hierarchy while the tree semantics populates the exponential hierarchy)

    Semantic Tagging with Deep Residual Networks

    Get PDF
    We propose a novel semantic tagging task, sem-tagging, tailored for the purpose of multilingual semantic parsing, and present the first tagger using deep residual networks (ResNets). Our tagger uses both word and character representations and includes a novel residual bypass architecture. We evaluate the tagset both intrinsically on the new task of semantic tagging, as well as on Part-of-Speech (POS) tagging. Our system, consisting of a ResNet and an auxiliary loss function predicting our semantic tags, significantly outperforms prior results on English Universal Dependencies POS tagging (95.71% accuracy on UD v1.2 and 95.67% accuracy on UD v1.3).Comment: COLING 2016, camera ready versio

    Do Neural Nets Learn Statistical Laws behind Natural Language?

    Full text link
    The performance of deep learning in natural language processing has been spectacular, but the reasons for this success remain unclear because of the inherent complexity of deep learning. This paper provides empirical evidence of its effectiveness and of a limitation of neural networks for language engineering. Precisely, we demonstrate that a neural language model based on long short-term memory (LSTM) effectively reproduces Zipf's law and Heaps' law, two representative statistical properties underlying natural language. We discuss the quality of reproducibility and the emergence of Zipf's law and Heaps' law as training progresses. We also point out that the neural language model has a limitation in reproducing long-range correlation, another statistical property of natural language. This understanding could provide a direction for improving the architectures of neural networks.Comment: 21 pages, 11 figure

    Towards an embedding of Graph Transformation in Intuitionistic Linear Logic

    Full text link
    Linear logics have been shown to be able to embed both rewriting-based approaches and process calculi in a single, declarative framework. In this paper we are exploring the embedding of double-pushout graph transformations into quantified linear logic, leading to a Curry-Howard style isomorphism between graphs and transformations on one hand, formulas and proof terms on the other. With linear implication representing rules and reachability of graphs, and the tensor modelling parallel composition of graphs and transformations, we obtain a language able to encode graph transformation systems and their computations as well as reason about their properties
    • …
    corecore