33 research outputs found

    Online ranking combination

    Get PDF

    Online convex combination of ranking models

    Get PDF

    A hybridisation technique for game playing using the upper confidence for trees algorithm with artificial neural networks

    Get PDF
    In the domain of strategic game playing, the use of statistical techniques such as the Upper Confidence for Trees (UCT) algorithm, has become the norm as they offer many benefits over classical algorithms. These benefits include requiring no game-specific strategic knowledge and time-scalable performance. UCT does not incorporate any strategic information specific to the game considered, but instead uses repeated sampling to effectively brute-force search through the game tree or search space. The lack of game-specific knowledge in UCT is thus both a benefit but also a strategic disadvantage. Pattern recognition techniques, specifically Neural Networks (NN), were identified as a means of addressing the lack of game-specific knowledge in UCT. Through a novel hybridisation technique which combines UCT and trained NNs for pruning, the UCTNN algorithm was derived. The NN component of UCT-NN was trained using a UCT self-play scheme to generate game-specific knowledge without the need to construct and manage game databases for training purposes. The UCT-NN algorithm is outlined for pruning in the game of Go-Moku as a candidate case-study for this research. The UCT-NN algorithm contained three major parameters which emerged from the UCT algorithm, the use of NNs and the pruning schemes considered. Suitable methods for finding candidate values for these three parameters were outlined and applied to the game of Go-Moku on a 5 by 5 board. An empirical investigation of the playing performance of UCT-NN was conducted in comparison to UCT through three benchmarks. The benchmarks comprise a common randomly moving opponent, a common UCTmax player which is given a large amount of playing time, and a pair-wise tournament between UCT-NN and UCT. The results of the performance evaluation for 5 by 5 Go-Moku were promising, which prompted an evaluation of a larger 9 by 9 Go-Moku board. The results of both evaluations indicate that the time allocated to the UCT-NN algorithm directly affects its performance when compared to UCT. The UCT-NN algorithm generally performs better than UCT in games with very limited time-constraints in all benchmarks considered except when playing against a randomly moving player in 9 by 9 Go-Moku. In real-time and near-real-time Go-Moku games, UCT-NN provides statistically significant improvements compared to UCT. The findings of this research contribute to the realisation of applying game-specific knowledge to the UCT algorithm

    Convergence of RProp and variants

    Get PDF
    This paper examines conditions under which the Resilient Propagation-Rprop algorithm fails to converge, identifies limitations of the so-called Globally Convergent Rprop-GRprop algorithm which was previously thought to guarantee convergence, and considers pathological behaviour of the implementation of GRprop in the neuralnet software package. A new robust convergent backpropagation-ARCprop algorithm is presented. The new algorithm builds on Rprop, but guarantees convergence by shortening steps as necessary to achieve a sufficient reduction in global error. Simulation results on four benchmark problems from the PROBEN1 collection show that the new algorithm achieves similar levels of performance to Rprop in terms of training speed, training accuracy, and generalization

    A review of differentiable digital signal processing for music and speech synthesis

    Get PDF
    The term “differentiable digital signal processing” describes a family of techniques in which loss function gradients are backpropagated through digital signal processors, facilitating their integration into neural networks. This article surveys the literature on differentiable audio signal processing, focusing on its use in music and speech synthesis. We catalogue applications to tasks including music performance rendering, sound matching, and voice transformation, discussing the motivations for and implications of the use of this methodology. This is accompanied by an overview of digital signal processing operations that have been implemented differentiably, which is further supported by a web book containing practical advice on differentiable synthesiser programming (https://intro2ddsp.github.io/). Finally, we highlight open challenges, including optimisation pathologies, robustness to real-world conditions, and design trade-offs, and discuss directions for future research

    Advances in Quantum Machine Learning

    Get PDF
    corecore