56 research outputs found

    Center for Space Microelectronics Technology

    Get PDF
    The 1990 technical report of the Jet Propulsion Laboratory Center for Space Microelectronics Technology summarizes the technical accomplishments, publications, presentations, and patents of the center during 1990. The report lists 130 publications, 226 presentations, and 87 new technology reports and patents

    Climbing and Walking Robots

    Get PDF
    Nowadays robotics is one of the most dynamic fields of scientific researches. The shift of robotics researches from manufacturing to services applications is clear. During the last decades interest in studying climbing and walking robots has been increased. This increasing interest has been in many areas that most important ones of them are: mechanics, electronics, medical engineering, cybernetics, controls, and computers. Today’s climbing and walking robots are a combination of manipulative, perceptive, communicative, and cognitive abilities and they are capable of performing many tasks in industrial and non- industrial environments. Surveillance, planetary exploration, emergence rescue operations, reconnaissance, petrochemical applications, construction, entertainment, personal services, intervention in severe environments, transportation, medical and etc are some applications from a very diverse application fields of climbing and walking robots. By great progress in this area of robotics it is anticipated that next generation climbing and walking robots will enhance lives and will change the way the human works, thinks and makes decisions. This book presents the state of the art achievments, recent developments, applications and future challenges of climbing and walking robots. These are presented in 24 chapters by authors throughtot the world The book serves as a reference especially for the researchers who are interested in mobile robots. It also is useful for industrial engineers and graduate students in advanced study

    Knowledge discovery for moderating collaborative projects

    Get PDF
    In today's global market environment, enterprises are increasingly turning towards collaboration in projects to leverage their resources, skills and expertise, and simultaneously address the challenges posed in diverse and competitive markets. Moderators, which are knowledge based systems have successfully been used to support collaborative teams by raising awareness of problems or conflicts. However, the functioning of a moderator is limited to the knowledge it has about the team members. Knowledge acquisition, learning and updating of knowledge are the major challenges for a Moderator's implementation. To address these challenges a Knowledge discOvery And daTa minINg inteGrated (KOATING) framework is presented for Moderators to enable them to continuously learn from the operational databases of the company and semi-automatically update the corresponding expert module. The architecture for the Universal Knowledge Moderator (UKM) shows how the existing moderators can be extended to support global manufacturing. A method for designing and developing the knowledge acquisition module of the Moderator for manual and semi-automatic update of knowledge is documented using the Unified Modelling Language (UML). UML has been used to explore the static structure and dynamic behaviour, and describe the system analysis, system design and system development aspects of the proposed KOATING framework. The proof of design has been presented using a case study for a collaborative project in the form of construction project supply chain. It has been shown that Moderators can "learn" by extracting various kinds of knowledge from Post Project Reports (PPRs) using different types of text mining techniques. Furthermore, it also proposed that the knowledge discovery integrated moderators can be used to support and enhance collaboration by identifying appropriate business opportunities and identifying corresponding partners for creation of a virtual organization. A case study is presented in the context of a UK based SME. Finally, this thesis concludes by summarizing the thesis, outlining its novelties and contributions, and recommending future research

    JTEC Panel report on electronic manufacturing and packaging in Japan

    Get PDF
    This report summarizes the status of electronic manufacturing and packaging technology in Japan in comparison to that in the United States, and its impact on competition in electronic manufacturing in general. In addition to electronic manufacturing technologies, the report covers technology and manufacturing infrastructure, electronics manufacturing and assembly, quality assurance and reliability in the Japanese electronics industry, and successful product realization strategies. The panel found that Japan leads the United States in almost every electronics packaging technology. Japan clearly has achieved a strategic advantage in electronics production and process technologies. Panel members believe that Japanese competitors could be leading U.S. firms by as much as a decade in some electronics process technologies

    21st century manufacturing machines: Design, fabrication and controls

    Get PDF
    Advances in nanotechnology, microfabrication and new manufacturing processes, the revolution of open electronics, and the emerging internet of things will influence the design, manufacture, and control of manufacturing machines in the future. For instance, miniaturization will change manufacturing processes; additive and rapid prototyping will change the production of machine components; and open electronics offer a platform for new control architectures for manufacturing systems that are open, modular, and easy to reconfigure. Combined with the latest trends in cyber-physical systems and the internet of things, open architecture controllers for CNC systems can become platforms, oriented for numerical control as a service (NCaaS) and manufacturing as a service, tailored to the creation of cyber-manufacturing networks of shared resources and web applications. With this potential in mind, this research presents new design-for-fabrication methodologies and control strategies to facilitate the creation of next generation machine tools. It provides a discussion and examples of the opportunities that the present moment offers. The first portion of this dissertation focuses on the design of complex 3D MEMS machines realized from conventional 2.5D microfabrication processes. It presents an analysis of an example XYZ-MEMS parallel kinematics stage as well as of designs of the individual components of the manipulator, integrated into a design approach for PK-XYZ-MEMS stages. It seems likely that this design-for-fabrication methodology will enable higher functionality in MEMS micromachines and result in new devices that interact, in three full dimensions, with their surroundings. Novel and innovative research exemplifies the opportunities new and economical manufacturing technologies offer for the design and fabrication of modern machine tools. The second portion of this dissertation describes the demonstration of a new flexural joint designed with both traditional and additive manufacturing processes. It extrapolates principles based on the design of this joint that alleviate the effects of low accuracy and poor surface finishing, anisotropy, reductions in material properties of components, and small holding forces. Based on these results, the next section presents case examples of the construction of mesoscale devices and machine components using multilayered composites and hybrid flexures for precision engineering, medical training, and machine tools for reduced life applications and tests design-for-fabrication strategies. The results suggest the strategies effectively address existing problems, providing a repertory of creative solutions applicable to the design of devices with hybrid flexures. The implications for medical industry, micro robotics, soft robotics, flexible electronics, and metrology systems are positive. Chapter number five examines to positive impact of open architectures of control for CNC systems, given the current availability of micro-processing power and open-source electronics. It presents a new modular architecture controller based on open-source electronics. This component-based approach offers the possibility of adding micro-processing units and an axis of motion without modification of the control programs. This kind of software and hardware modularity is important for the reconfiguration of new manufacturing units. The flexibility of this architecture makes it a convenient testbed for the implementation of new control algorithms on different electromechanical systems. This research provides general purpose, open architecture for the design of a CNC system based on open electronics and detailed information to experiment with these platforms. This dissertation’s final chapter describes how applying the latest trends to the classical concepts of modular and open architecture controllers for CNC systems results in a control platform, oriented for numerical control as a service (NCaaS) and manufacturing as a service (MaaS), tailored to the creation of cyber-manufacturing networks of shared resources and web applications. Based on this technology, this chapter introduces new manufacturing network for numerical control (NC) infrastructure, provisioned and managed over the internet. The proposed network architecture has a hardware, a virtualization, an operating system, and a network layer. With a new operating system necessary to service and virtualize manufacturing resources, and a micro service architecture of manufacturing nodes and assets, this network is a new paradigm in cloud manufacturing

    Annual Report of the University, 2001-2002, Volumes 1-4

    Get PDF
    VITAL ACADEMIC CLIMATE* by Brian Foster, Provost/Vice President of Academic Affairs A great university engages students and faculty fully in important ideas and issues ... not just to learn about them, but to take them apart and put them back together, to debate, deconstruct, resist, reconstruct and build upon them. Engagement of this sort takes concentration and commitment, and it produces the kind of discipline and passion that leads to student and faculty success and satisfaction in their studies, research, performance, artistic activity and service. It is also the kind of activity that creates a solid, nurturing spirit of community. This is what we mean when we talk about a vital academic climate. We are striving for an environment that will enrich the social, cultural and intellectual lives of all who come in contact with the University. Many things interconnect to make this happen: curriculum, co-curricular activities, conferences, symposia, cultural events, community service, research and social activity. Our goal is to create the highest possible level of academic commitment and excitement at UNM. This is what characterizes a truly great university. *Strategic Direction 2 New Mexico native Andres C. Salazar, a Ph.D. in electrical engineering from Michigan State University, has been named the PNM Chair in Microsystems, Commercialization and Technology. Carrying the title of professor, the PNM Chair is a joint appointment between the School of Engineering and the Anderson Schools of Management. Spring 2002 graduate John Probasco was selected a 2002 Rhodes Scholar, the second UNM student to be so honored in the past four years. The biochemistry major from Alamogordo previously had been awarded the Goldwater Scholarship and the Truman Scholarship. Andres c. Salazar Biology student Sophie Peterson of Albuquerque was one of 30 students nationwide to receive a 2002-2003 Award of Excellence from Phi Kappa Phi, the oldest and largest national honor society. Regents\\u27 Professor of Communication and Journalism Everett M. Rogers was selected the University\\u27s 4 71h Annual Research Lecturer, the highest honor UNM bestows upon members of its faculty. John Probasco honored by Student Activities Director Debbie Morris. New Mexico resident, author and poet Simon}. Ortiz received an Honorary Doctorate of Letters at Spring Commencement ceremonies. Child advocate Angela Angie Vachio, founder and executive director of Peanut Butter and Jelly Family Services, Inc., was awarded an Honorary Doctorate of Humane Letters. American Studies Assistant Professor Amanda}. Cobb won the 22 d annual American Book Award for listening to Our Grandmothers\\u27 Stories: The Bloomfield Academy for Chickasaw Females, 1852-1949

    Solving Challenging Real-World Scheduling Problems

    Get PDF
    This work contains a series of studies on the optimization of three real-world scheduling problems, school timetabling, sports scheduling and staff scheduling. These challenging problems are solved to customer satisfaction using the proposed PEAST algorithm. The customer satisfaction refers to the fact that implementations of the algorithm are in industry use. The PEAST algorithm is a product of long-term research and development. The first version of it was introduced in 1998. This thesis is a result of a five-year development of the algorithm. One of the most valuable characteristics of the algorithm has proven to be the ability to solve a wide range of scheduling problems. It is likely that it can be tuned to tackle also a range of other combinatorial problems. The algorithm uses features from numerous different metaheuristics which is the main reason for its success. In addition, the implementation of the algorithm is fast enough for real-world use.Siirretty Doriast
    corecore