32 research outputs found

    Predicting the artificial immunity induced by RUTI® vaccine against tuberculosis using universal immune system simulator (UISS)

    Get PDF
    BACKGROUND: Tuberculosis (TB) represents a worldwide cause of mortality (it infects one third of the world's population) affecting mostly developing countries, including India, and recently also developed ones due to the increased mobility of the world population and the evolution of different new bacterial strains capable to provoke multi-drug resistance phenomena. Currently, antitubercular drugs are unable to eradicate subpopulations of Mycobacterium tuberculosis (MTB) bacilli and therapeutic vaccinations have been postulated to overcome some of the critical issues related to the increase of drug-resistant forms and the difficult clinical and public health management of tuberculosis patients. The Horizon 2020 EC funded project "In Silico Trial for Tuberculosis Vaccine Development" (STriTuVaD) to support the identification of new therapeutic interventions against tuberculosis through novel in silico modelling of human immune responses to disease and vaccines, thereby drastically reduce the cost of clinical trials in this critical sector of public healthcare

    Moving forward through the in silico modeling of tuberculosis : a further step with UISS-TB

    Get PDF
    In 2018, about 10 million people were found infected by tuberculosis, with approximately 1.2 million deaths worldwide. Despite these numbers have been relatively stable in recent years, tuberculosis is still considered one of the top 10 deadliest diseases worldwide. Over the years, Mycobacterium tuberculosis has developed a form of resistance to first-line tuberculosis treatments, specifically to isoniazid, leading to multi-drug-resistant tuberculosis. In this context, the EU and Indian DBT funded project STriTuVaD-In Silico Trial for Tuberculosis Vaccine Development-is supporting the identification of new interventional strategies against tuberculosis thanks to the use of Universal Immune System Simulator (UISS), a computational framework capable of predicting the immunity induced by specific drugs such as therapeutic vaccines and antibiotics. Here, we present how UISS accurately simulates tuberculosis dynamics and its interaction within the immune system, and how it predicts the efficacy of the combined action of isoniazid and RUTI vaccine in a specific digital population cohort. Specifically, we simulated two groups of 100 digital patients. The first group was treated with isoniazid only, while the second one was treated with the combination of RUTI vaccine and isoniazid, according to the dosage strategy described in the clinical trial design. UISS-TB shows to be in good agreement with clinical trial results suggesting that RUTI vaccine may favor a partial recover of infected lung tissue. In silico trials innovations represent a powerful pipeline for the prediction of the effects of specific therapeutic strategies and related clinical outcomes. Here, we present a further step in UISS framework implementation. Specifically, we found that the simulated mechanism of action of RUTI and INH are in good alignment with the results coming from past clinical phase IIa trials

    Parallel pair-wise interaction for multi-agent immune systems modelling

    Get PDF
    Agent Based Modelling (ABM), is an approach for modelling dynamic systems and studying complex and emergent behaviour. ABM approach is a very common technique in biological domain due to high demand for a large scale analysis tool to collect and interpret information to solve biological problems. However, simulating large scale cellular level models (i.e. large number of agents/entities) require a high degree of computational power which is achievable through parallel computing methods such as Graphics Processing Units (GPUs). The use of parallel approaches in ABMs is growing rapidly specifically when modelling in continuous space system (particle based). Parallel implementation of particle based simulation within continuum space where agents contain quantities of chemicals/substances is very challenging. Pair-wise interactions are different abstraction to continuous space (particle) models which is commonly used for immune system modelling. This paper describes an approach to parallelising the key component of biological and immune system models (pair-wise interactions) within an ABM model. Our performance results demonstrate the applicability of this method to a broader class of biological systems with the same type of cell interactions and that it can be used as the basis for developing complete immune system models on parallel hardware

    Parallelisation strategies for agent based simulation of immune systems

    Get PDF
    Background In recent years, the study of immune response behaviour using bottom up approach, Agent Based Modeling (ABM), has attracted considerable efforts. The ABM approach is a very common technique in the biological domain due to high demand for a large scale analysis tools for the collection and interpretation of information to solve biological problems. Simulating massive multi-agent systems (i.e. simulations containing a large number of agents/entities) requires major computational effort which is only achievable through the use of parallel computing approaches. Results This paper explores different approaches to parallelising the key component of biological and immune system models within an ABM model: pairwise interactions. The focus of this paper is on the performance and algorithmic design choices of cell interactions in continuous and discrete space where agents/entities are competing to interact with one another within a parallel environment. Conclusions Our performance results demonstrate the applicability of these methods to a broader class of biological systems exhibiting typical cell to cell interactions. The advantage and disadvantage of each implementation is discussed showing each can be used as the basis for developing complete immune system models on parallel hardware

    A Credibility Assessment Plan for an In Silico Model that Predicts the Dose–Response Relationship of New Tuberculosis Treatments

    Get PDF
    Tuberculosis is one of the leading causes of death in several developing countries and a public health emergency of international concern. In Silico Trials can be used to support innovation in the context of drug development reducing the duration and the cost of the clinical experimentations, a particularly desirable goal for diseases such as tuberculosis. The agent-based Universal Immune System Simulator was used to develop an In Silico Trials environment that can predict the dose–response of new therapeutic vaccines against pulmonary tuberculosis, supporting the optimal design of clinical trials. But before such in silico methodology can be used in the evaluation of new treatments, it is mandatory to assess the credibility of this predictive model. This study presents a risk-informed credibility assessment plan inspired by the ASME V&V 40‐2018 technical standard. Based on the selected context of use and regulatory impact of the technology, a detailed risk analysis is described together with the definition of all the verification and validation activities and related acceptability criteria. The work provides an example of the first steps required for the regulatory evaluation of an agent-based model used in the context of drug development

    Moving forward through the in silico modeling of tuberculosis: a further step with UISS-TB

    Get PDF
    Background In 2018, about 10 million people were found infected by tuberculosis, with approximately 1.2 million deaths worldwide. Despite these numbers have been relatively stable in recent years, tuberculosis is still considered one of the top 10 deadliest diseases worldwide. Over the years, Mycobacterium tuberculosis has developed a form of resistance to first-line tuberculosis treatments, specifically to isoniazid, leading to multi-drug-resistant tuberculosis. In this context, the EU and Indian DBT funded project STriTuVaD—In Silico Trial for Tuberculosis Vaccine Development—is supporting the identification of new interventional strategies against tuberculosis thanks to the use of Universal Immune System Simulator (UISS), a computational framework capable of predicting the immunity induced by specific drugs such as therapeutic vaccines and antibiotics. Results Here, we present how UISS accurately simulates tuberculosis dynamics and its interaction within the immune system, and how it predicts the efficacy of the combined action of isoniazid and RUTI vaccine in a specific digital population cohort. Specifically, we simulated two groups of 100 digital patients. The first group was treated with isoniazid only, while the second one was treated with the combination of RUTI vaccine and isoniazid, according to the dosage strategy described in the clinical trial design. UISS-TB shows to be in good agreement with clinical trial results suggesting that RUTI vaccine may favor a partial recover of infected lung tissue. Conclusions In silico trials innovations represent a powerful pipeline for the prediction of the effects of specific therapeutic strategies and related clinical outcomes. Here, we present a further step in UISS framework implementation. Specifically, we found that the simulated mechanism of action of RUTI and INH are in good alignment with the results coming from past clinical phase IIa trials

    Generation of digital patients for the simulation of tuberculosis with UISS-TB

    Get PDF
    Background The STriTuVaD project, funded by Horizon 2020, aims to test through a Phase IIb clinical trial one of the most advanced therapeutic vaccines against tuberculosis. As part of this initiative, we have developed a strategy for generating in silico patients consistent with target population characteristics, which can then be used in combination with in vivo data on an augmented clinical trial. Results One of the most challenging tasks for using virtual patients is developing a methodology to reproduce biological diversity of the target population, ie, providing an appropriate strategy for generating libraries of digital patients. This has been achieved through the creation of the initial immune system repertoire in a stochastic way, and through the identification of a vector of features that combines both biological and pathophysiological parameters that personalise the digital patient to reproduce the physiology and the pathophysiology of the subject. Conclusions We propose a sequential approach to sampling from the joint features population distribution in order to create a cohort of virtual patients with some specific characteristics, resembling the recruitment process for the target clinical trial, which then can be used for augmenting the information from the physical the trial to help reduce its size and duration
    corecore