120 research outputs found

    An Assessment of Indoor Geolocation Systems

    Get PDF
    Currently there is a need to design, develop, and deploy autonomous and portable indoor geolocation systems to fulfil the needs of military, civilian, governmental and commercial customers where GPS and GLONASS signals are not available due to the limitations of both GPS and GLONASS signal structure designs. The goal of this dissertation is (1) to introduce geolocation systems; (2) to classify the state of the art geolocation systems; (3) to identify the issues with the state of the art indoor geolocation systems; and (4) to propose and assess four WPI indoor geolocation systems. It is assessed that the current GPS and GLONASS signal structures are inadequate to overcome two main design concerns; namely, (1) the near-far effect and (2) the multipath effect. We propose four WPI indoor geolocation systems as an alternative solution to near-far and multipath effects. The WPI indoor geolocation systems are (1) a DSSS/CDMA indoor geolocation system, (2) a DSSS/CDMA/FDMA indoor geolocation system, (3) a DSSS/OFDM/CDMA/FDMA indoor geolocation system, and (4) an OFDM/FDMA indoor geolocation system. Each system is researched, discussed, and analyzed based on its principle of operation, its transmitter, the indoor channel, and its receiver design and issues associated with obtaining an observable to achieve indoor navigation. Our assessment of these systems concludes the following. First, a DSSS/CDMA indoor geolocation system is inadequate to neither overcome the near-far effect not mitigate cross-channel interference due to the multipath. Second, a DSSS/CDMA/FDMA indoor geolocation system is a potential candidate for indoor positioning, with data rate up to 3.2 KBPS, pseudorange error, less than to 2 m and phase error less than 5 mm. Third, a DSSS/OFDM/CDMA/FDMA indoor geolocation system is a potential candidate to achieve similar or better navigation accuracy than a DSSS/CDMA indoor geolocation system and data rate up to 5 MBPS. Fourth, an OFDM/FDMA indoor geolocation system is another potential candidate with a totally different signal structure than the pervious three WPI indoor geolocation systems, but with similar pseudorange error performance

    Techniques d’Estimation de Canal et de Décalage de Fréquence Porteuse pour Systèmes Sans-fil Multiporteuses en Liaison Montante

    Get PDF
    Multicarrier modulation is the common feature of high-data rate mobile wireless systems. In that case, two phenomena disturb the symbol detection. Firstly, due to the relative transmitter-receiver motion and a difference between the local oscillator (LO) frequency at the transmitter and the receiver, a carrier frequency offset (CFO) affects the received signal. This leads to an intercarrier interference (ICI). Secondly, several versions of the transmitted signal are received due to the wireless propagation channel. These unwanted phenomena must be taken into account when designing a receiver. As estimating the multipath channel and the CFO is essential, this PhD deals with several CFO and channel estimation methods based on optimal filtering. Firstly, as the estimation issue is nonlinear, we suggest using the extended Kalman filter (EKF). It is based on a local linearization of the equations around the last state estimate. However, this approach requires a linearization based on calculations of Jacobians and Hessians matrices and may not be a sufficient description of the nonlinearity. For these reasons, we can consider the sigma-point Kalman filter (SPKF), namely the unscented Kalman Filter (UKF) and the central difference Kalman filter (CDKF). The UKF is based on the unscented transformation whereas the CDKF is based on the second order Sterling polynomial interpolation formula. Nevertheless, the above methods require an exact and accurate a priori system model as well as perfect knowledge of the additive measurementnoise statistics. Therefore, we propose to use the H∞ filtering, which is known to be more robust to uncertainties than Kalman filtering. As the state-space representation of the system is non-linear, we first evaluate the “extended H∞ filter”, which is based on a linearization of the state-space equations like the EKF. As an alternative, the “unscented H∞ filter”, which has been recently proposed in the literature, is implemented by embedding the unscented transformation into the “extended H∞ filter” and carrying out the filtering by using the statistical linear error propagation approach.Multicarrier modulation is the common feature of high-data rate mobile wireless systems. In that case, two phenomena disturb the symbol detection. Firstly, due to the relative transmitter-receiver motion and a difference between the local oscillator (LO) frequency at the transmitter and the receiver, a carrier frequency offset (CFO) affects the received signal. This leads to an intercarrier interference (ICI). Secondly, several versions of the transmitted signal are received due to the wireless propagation channel. These unwanted phenomena must be taken into account when designing a receiver. As estimating the multipath channel and the CFO is essential, this PhD deals with several CFO and channel estimation methods based on optimal filtering. Firstly, as the estimation issue is nonlinear, we suggest using the extended Kalman filter (EKF). It is based on a local linearization of the equations around the last state estimate. However, this approach requires a linearization based on calculations of Jacobians and Hessians matrices and may not be a sufficient description of the nonlinearity. For these reasons, we can consider the sigma-point Kalman filter (SPKF), namely the unscented Kalman Filter (UKF) and the central difference Kalman filter (CDKF). The UKF is based on the unscented transformation whereas the CDKF is based on the second order Sterling polynomial interpolation formula. Nevertheless, the above methods require an exact and accurate a priori system model as well as perfect knowledge of the additive measurementnoise statistics. Therefore, we propose to use the H∞ filtering, which is known to be more robust to uncertainties than Kalman filtering. As the state-space representation of the system is non-linear, we first evaluate the “extended H∞ filter”, which is based on a linearization of the state-space equations like the EKF. As an alternative, the “unscented H∞ filter”, which has been recently proposed in the literature, is implemented by embedding the unscented transformation into the “extended H∞ filter” and carrying out the filtering by using the statistical linear error propagation approach

    Spectrally efficient multicarrier communication systems: signal detection, mathematical modelling and optimisation

    Get PDF
    This thesis considers theoretical, analytical and engineering design issues relating to non-orthogonal Spectrally Efficient Frequency Division Multiplexing (SEFDM) communication systems that exhibit significant spectral merits when compared to Orthogonal FDM (OFDM) schemes. Alas, the practical implementation of such systems raises significant challenges, with the receivers being the bottleneck. This research explores detection of SEFDM signals. The mathematical foundations of such signals lead to proposals of different orthonormalisation techniques as required at the receivers of non-orthogonal FDM systems. To address SEFDM detection, two approaches are considered: either attempt to solve the problem optimally by taking advantage of special cases properties or to apply sub-optimal techniques that offer reduced complexities at the expense of error rates degradation. Initially, the application of sub-optimal linear detection techniques, such as Zero Forcing (ZF) and Minimum Mean Squared Error (MMSE), is examined analytically and by detailed modelling. To improve error performance a heuristic algorithm, based on a local search around an MMSE estimate, is designed by combining MMSE with Maximum Likelihood (ML) detection. Yet, this new method appears to be efficient for BPSK signals only. Hence, various variants of the sphere decoder (SD) are investigated. A Tikhonov regularised SD variant achieves an optimal solution for the detection of medium size signals in low noise regimes. Detailed modelling shows the SD detector to be well suited to the SEFDM detection, however, with complexity increasing with system interference and noise. A new design of a detector that offers a good compromise between computational complexity and error rate performance is proposed and tested through modelling and simulation. Standard reformulation techniques are used to relax the original optimal detection problem to a convex Semi-Definite Program (SDP) that can be solved in polynomial time. Although SDP performs better than other linear relaxations, such as ZF and MMSE, its deviation from optimality also increases with the deterioration of the system inherent interference. To improve its performance a heuristic algorithm based on a local search around the SDP estimate is further proposed. Finally, a modified SD is designed to implement faster than the local search SDP concept. The new method/algorithm, termed the pruned or constrained SD, achieves the detection of realistic SEFDM signals in noisy environments

    Physical Layer Parameter and Algorithm Study in a Downlink OFDM-LTE Context

    Get PDF

    Multiple-Input Multiple-Output Detection Algorithms for Generalized Frequency Division Multiplexing

    Get PDF
    Since its invention, cellular communication has dramatically transformed personal lifes and the evolution of mobile networks is still ongoing. Evergrowing demand for higher data rates has driven development of 3G and 4G systems, but foreseen 5G requirements also address diverse characteristics such as low latency or massive connectivity. It is speculated that the 4G plain cyclic prefix (CP)-orthogonal frequency division multiplexing (OFDM) cannot sufficiently fulfill all requirements and hence alternative waveforms have been in-vestigated, where generalized frequency division multiplexing (GFDM) is one popular option. An important aspect for any modern wireless communication system is the application of multi-antenna, i.e. MIMO techiques, as MIMO can deliver gains in terms of capacity, reliability and connectivity. Due to its channel-independent orthogonality, CP-OFDM straightforwardly supports broadband MIMO techniques, as the resulting inter-antenna interference (IAI) can readily be resolved. In this regard, CP-OFDM is unique among multicarrier waveforms. Other waveforms suffer from additional inter-carrier interference (ICI), inter-symbol interference (ISI) or both. This possibly 3-dimensional interference renders an optimal MIMO detection much more complex. In this thesis, weinvestigate how GFDM can support an efficient multiple-input multiple-output (MIMO) operation given its 3-dimensional interference structure. To this end, we first connect the mathematical theory of time-frequency analysis (TFA) with multicarrier waveforms in general, leading to theoretical insights into GFDM. Second, we show that the detection problem can be seen as a detection problem on a large, banded linear model under Gaussian noise. Basing on this observation, we propose methods for applying both space-time code (STC) and spatial multiplexing techniques to GFDM. Subsequently, we propose methods to decode the transmitted signals and numerically and theoretically analyze their performance in terms of complexiy and achieved frame error rate (FER). After showing that GFDM modulation and linear demodulation is a direct application of Gabor expansion and transform, we apply results from TFA to explain singularities of the modulation matrix and derive low-complexity expressions for receiver filters. We derive two linear detection algorithms for STC encoded GFDM signals and we show that their performance is equal to OFDM. In the case of spatial multiplexing, we derive both non-iterative and iterative detection algorithms which base on successive interference cancellation (SIC) and minimum mean squared error (MMSE)-parallel interference cancellation (PIC) detection, respectively. By analyzing the error propagation of the SIC algorithm, we explain its significantly inferior performance compared to OFDM. Using feedback information from the channel decoder, we can eventually show that near-optimal GFDM detection can outperform an optimal OFDM detector by up to 3dB for high SNR regions. We conclude that GFDM, given the obtained results, is not a general-purpose replacement for CP-OFDM, due to higher complexity and varying performance. Instead, we can propose GFDM for scenarios with strong frequency-selectivity and stringent spectral and FER requirements

    Applications of Lattice Codes in Communication Systems

    Get PDF
    In the last decade, there has been an explosive growth in different applications of wireless technology, due to users' increasing expectations for multi-media services. With the current trend, the present systems will not be able to handle the required data traffic. Lattice codes have attracted considerable attention in recent years, because they provide high data rate constellations. In this thesis, the applications of implementing lattice codes in different communication systems are investigated. The thesis is divided into two major parts. Focus of the first part is on constellation shaping and the problem of lattice labeling. The second part is devoted to the lattice decoding problem. In constellation shaping technique, conventional constellations are replaced by lattice codes that satisfy some geometrical properties. However, a simple algorithm, called lattice labeling, is required to map the input data to the lattice code points. In the first part of this thesis, the application of lattice codes for constellation shaping in Orthogonal Frequency Division Multiplexing (OFDM) and Multi-Input Multi-Output (MIMO) broadcast systems are considered. In an OFDM system a lattice code with low Peak to Average Power Ratio (PAPR) is desired. Here, a new lattice code with considerable PAPR reduction for OFDM systems is proposed. Due to the recursive structure of this lattice code, a simple lattice labeling method based on Smith normal decomposition of an integer matrix is obtained. A selective mapping method in conjunction with the proposed lattice code is also presented to further reduce the PAPR. MIMO broadcast systems are also considered in the thesis. In a multiple antenna broadcast system, the lattice labeling algorithm should be such that different users can decode their data independently. Moreover, the implemented lattice code should result in a low average transmit energy. Here, a selective mapping technique provides such a lattice code. Lattice decoding is the focus of the second part of the thesis, which concerns the operation of finding the closest point of the lattice code to any point in N-dimensional real space. In digital communication applications, this problem is known as the integer least-square problem, which can be seen in many areas, e.g. the detection of symbols transmitted over the multiple antenna wireless channel, the multiuser detection problem in Code Division Multiple Access (CDMA) systems, and the simultaneous detection of multiple users in a Digital Subscriber Line (DSL) system affected by crosstalk. Here, an efficient lattice decoding algorithm based on using Semi-Definite Programming (SDP) is introduced. The proposed algorithm is capable of handling any form of lattice constellation for an arbitrary labeling of points. In the proposed methods, the distance minimization problem is expressed in terms of a binary quadratic minimization problem, which is solved by introducing several matrix and vector lifting SDP relaxation models. The new SDP models provide a wealth of trade-off between the complexity and the performance of the decoding problem

    Novel feedback and signalling mechanisms for interference management and efficient modulation

    Get PDF
    In order to meet the ever-growing demand for mobile data, a number of different technologies have been adopted by the fourth generation standardization bodies. These include multiple access schemes such as spatial division multiple access (SDMA), and efficient modulation techniques such as orthogonal frequency division multiplexing (OFDM)-based modulation. The specific objectives of this theses are to develop an effective feedback method for interference management in smart antenna SDMA systems and to design an efficient OFDM-based modulation technique, where an additional dimension is added to the conventional two-dimensional modulation techniques such as quadrature amplitude modulation (QAM). In SDMA time division duplex (TDD) systems, where channel reciprocity is maintained, uplink (UL) channel sounding method is considered as one of the most promising feedback methods due to its bandwidth and delay efficiency. Conventional channel sounding (CCS) only conveys the channel state information (CSI) of each active user to the base station (BS). Due to the limitation in system performance because of co-channel interference (CCI) from adjacent cells in interference-limited scenarios, CSI is only a suboptimal metric for multiuser spatial multiplexing optimization. The first major contribution of this theses is a novel interference feedback method proposed to provide the BS with implicit knowledge about the interference level received by each mobile station (MS). More specifically, it is proposed to weight the conventional channel sounding pilots by the level of the experienced interference at the user’s side. Interference-weighted channel sounding (IWCS) acts as a spectrally efficient feedback technique that provides the BS with implicit knowledge about CCI experienced by each MS, and significantly improves the downlink (DL) sum capacity for both greedy and fair scheduling policies. For the sake of completeness, a novel procedure is developed to make the IWCS pilots usable for UL optimization. It is proposed to divide the optimization metric obtained from the IWCS pilots by the interference experienced at the BS’s antennas. The resultant new metric, the channel gain divided by the multiplication of DL and UL interference, provides link-protection awareness and is used to optimize both UL and DL. Using maximum capacity scheduling criterion, the link-protection aware metric results in a gain in the median system sum capacity of 26.7% and 12.5% in DL and UL respectively compared to the case when conventional channel sounding techniques are used. Moreover, heuristic algorithm has been proposed in order to facilitate a practical optimization and to reduce the computational complexity. The second major contribution of this theses is an innovative transmission approach, referred to as subcarrier-index modulation (SIM), which is proposed to be integrated with OFDM. The key idea of SIM is to employ the subcarrier-index to convey information to the receiver. Furthermore, a closed-form analytical bit error ratio (BER) of SIM OFDM in Rayleigh channel is derived. Simulation results show BER performance gain of 4 dB over 4-QAM OFDM for both coded and uncoded data without power saving policy. Alternatively, power saving policy maintains an average gain of 1 dB while only using half OFDM symbol transmit power
    corecore