5,293 research outputs found

    UMSL Bulletin 2023-2024

    Get PDF
    The 2023-2024 Bulletin and Course Catalog for the University of Missouri St. Louis.https://irl.umsl.edu/bulletin/1088/thumbnail.jp

    Proceedings of the 10th International congress on architectural technology (ICAT 2024): architectural technology transformation.

    Get PDF
    The profession of architectural technology is influential in the transformation of the built environment regionally, nationally, and internationally. The congress provides a platform for industry, educators, researchers, and the next generation of built environment students and professionals to showcase where their influence is transforming the built environment through novel ideas, businesses, leadership, innovation, digital transformation, research and development, and sustainable forward-thinking technological and construction assembly design

    Meta-critical thinking, paradox, and probabilities

    Get PDF
    There is as much lack of clarity concerning what “critical thinking” involves, even among those charged with teaching it, as there is consensus that we need more emphasis on it in both academia and society. There is an apparent need to think critically about critical thinking, an exercise that might be called meta-critical thinking. It involves emphasizing a practice in terms of which “critical thinking” is helpfully carried out and clarifying one or more of the concepts in terms of which “critical thinking” is usually defined. The practice is distinction making and the concept that of evidence. Science advances by constructing models that explain real-world processes. Once multiple potential models have been distinguished, there remains the task of identifying which models match the real-world process better than others. Since statistical inference has in large part to do with showing how data provide support, i.e., furnish evidence, that the model/hypothesis is more or less likely while still uncertain, we turn to it to help make the concept more precise and thereby useful. In fact, two of the leading methodological paradigms—Bayesian and likelihood—can be taken to provide answers to the questions of the extent to which as well as how data provide evidence for conclusions. Examining these answers in some detail is a highly promising way to make progress. We do so by way of the analysis of three well-known statistical paradoxes—the Lottery, the Old Evidence, and Humphreys’—and the identification of distinctions on the basis of which their plausible resolutions depend. These distinctions, among others between belief and evidence and different concepts of probability, in turn have more general applications. They are applied here to two highly contested public policy issues—the efficacy of COVID vaccinations and the fossil fuel cause of climate change. Our aim is to provide some tools, they might be called “healthy habits of mind,” with which to assess statistical arguments, in particular with respect to the nature and extent of the evidence they furnish, and to illustrate their use in well-defined ways

    Thermophoresis of electrolyte solutions and protein-ligand systems

    Get PDF
    Thermophoresis or thermodiffusion is the mass transport driven by a temperature gradient. This thesis focuses on the thermophoretic motion of ionic compounds in a biological context and is motivated by a practical application, in which thermodiffusion is used to monitor protein-ligand reactions. Proteins are complex molecules containing non-ionic and ionic groups. While recent studies of non-ionic compounds found a strong correlation between thermodiffusion and hydration, it is unclear how this correlation changes when molecules are charged. To separate ionic from non-ionic contributions, it is reasonable to look first into the thermophoretic motion of simple salts without large organic side groups and to study in the next step complex protein-ligand systems, which typically contain hydrophobic and hydrophilic groups. The systematic studies of aqueous solutions of simple salts should reveal differences between ionic and non-ionic systems and should give further information about ion and ion specific effects. Due to the high complexity of protein-ligand systems, complementary methods should be used to gain a better understanding of the interactions between different components that are present in the system. This will help to understand how the thermophoretic behavior of the free protein differs from that of the protein-ligand complex formed. Study of the thermophoretic behavior of ionic systems indicates that several correlations, which were found for aqueous solutions of non-ionic solutes are no longer valid for ionic solutes. For non-ionic solutes hydrogen bonds primarily influence the thermophoretic behavior. In case of ionic solutes, although both electrostatic interactions and hydrogen bonds are present, it is found that thermophoretic behavior is influenced by electrostatic interactions. Focusing on the specific ion effects for ionic systems in the context of the Hofmeister series, a change of the anion is found to influence the thermophoretic behavior more than a change of the cation. Further, a correlation between thermophoretic behavior and hydrophilicity of the ionic solutes is found, which underlines the sensitivity of thermodiffusion to changes in hydration. Based on this sensitivity, a preliminary model is developed for describing the non-monotonous variation of Soret coefficient ST with concentration for aqueous solutions of alkali iodide salts. To study the thermodiffusion of binding reactions, we also use complementary methods such as Isothermal Titration Calorimetry (ITC) and a thermophoretic microfluidic cell. As systems, we have chosen EDTA-CaCl2 and protein-ligand systems (binding of Bovine Carbonic Anhydrase I (BCA I) with two aryl sulfonamide ligands). To gain deeper insight into the complex formation reactions thermophoretic data (non-equilibrium process) are compared with thermodynamic data (equilibrium process) to establish a mathematical relation between ST and Gibb’s free energy ΔG. For EDTA-CaCl2 and protein-ligand systems, the derived relation holds valid, which enables calculation of ΔG at a particular temperature from ST

    Engineering Systems of Anti-Repressors for Next-Generation Transcriptional Programming

    Get PDF
    The ability to control gene expression in more precise, complex, and robust ways is becoming increasingly relevant in biotechnology and medicine. Synthetic biology has sought to accomplish such higher-order gene regulation through the engineering of synthetic gene circuits, whereby a gene’s expression can be controlled via environmental, temporal, or cellular cues. A typical approach to gene regulation is through transcriptional control, using allosteric transcription factors (TFs). TFs are regulatory proteins that interact with operator DNA elements located in proximity to gene promoters to either compromise or activate transcription. For many TFs, including the ones discussed here, this interaction is modulated by binding to a small molecule ligand for which the TF evolved natural specificity and a related metabolism. This modulation can occur with two main phenotypes: a TF shows the repressor (X+) phenotype if its binding to the ligand causes it to dissociate from the DNA, allowing transcription, while a TF shows the anti-repressor (XA) phenotype if its binding to the ligand causes it to associate to the DNA, preventing transcription. While both functional phenotypes are vital components of regulatory gene networks, anti-repressors are quite rare in nature compared to repressors and thus must be engineered. We first developed a generalized workflow for engineering systems of anti-repressors from bacterial TFs in a family of transcription factors related to the ubiquitous lactose repressor (LacI), the LacI/GalR family. Using this workflow, which is based on a re-routing of the TF’s allosteric network, we engineered anti-repressors in the fructose repressor (anti-FruR – responsive to fructose-1,6-phosphate) and ribose repressor (anti-RbsR – responsive to D-ribose) scaffolds, to complement XA TFs engineered previously in the LacI scaffold (anti-LacI – responsive to IPTG). Engineered TFs were then conferred with alternate DNA binding. To demonstrate their utility in synthetic gene circuits, systems of engineered TFs were then deployed to construct transcriptional programs, achieving all of the NOT-oriented Boolean logical operations – NOT, NOR, NAND, and XNOR – in addition to BUFFER and AND. Notably, our gene circuits built using anti-repressors are far simpler in design and, therefore, exert decreased burden on the chassis cells compared to the state-of-the-art as anti-repressors represent compressed logical operations (gates). Further, we extended this workflow to engineer ligand specificity in addition to regulatory phenotype. Performing the engineering workflow with a fourth member of the LacI/GalR family, the galactose isorepressor (GalS – naturally responsive to D-fucose), we engineered IPTG-responsive repressor and anti-repressor GalS mutants in addition to a D-fucose responsive anti-GalS TF. These engineered TFs were then used to create BANDPASS and BANDSTOP biological signal processing filters, themselves compressed compared to the state-of-the-art, and open-loop control systems. These provided facile methods for dynamic turning ‘ON’ and ‘OFF’ of genes in continuous growth in real time. This presents a general advance in gene regulation, moving beyond simple inducible promoters. We then demonstrated the capabilities of our engineered TFs to function in combinatorial logic using a layered logic approach, which currently stands as the state-of-the art. Using our anti-repressors in layered logic had the advantage of reducing cellular metabolic burden, as we were able to create the fundamental NOT/NOR operations with fewer genetic parts. Additionally, we created more TFs to use in layered logic approaches to prevent cellular cross-talk and minimize the number of TFs necessary to create these gene circuits. Here we demonstrated the successful deployment of our XA-built NOR gate system to create the BUFFER, NOT, NOR, OR, AND, and NAND gates. The work presented here describes a workflow for engineering (i) allosteric phenotype, (ii) ligand selectivity, and (iii) DNA specificity in allosteric transcription factors. The products of the workflow themselves serve as vital tools for the construction of next-generation synthetic gene circuits and genetic regulatory devices. Further, from the products of the workflow presented here, certain design heuristics can be gleaned, which should better facilitate the design of allosteric TFs in the future, moving toward a semi-rational engineering approach. Additionally, the work presented here outlines a transcriptional programming structure and metrology which can be broadly adapted and scaled for future applications and expansion. Consequently, this thesis presents a means for advanced control of gene expression, with promise to have long-reaching implications in the future.Ph.D

    Current issues of the Russian language teaching XIV

    Get PDF
    Collection of papers “Current issues of the Russian language teaching XIV” is devoted to issues of methodology of teaching Russian as a foreign language, to issues of linguistics and literary science and includes papers related to the use of online tools and resources in teaching Russian. This collection of papers is a result of the international scientific conference “Current issues of the Russian language teaching XIV”, which was scheduled for 8–10 May 2020, but due to the pandemic COVID-19 took place remotely

    Religion, Education, and the ‘East’. Addressing Orientalism and Interculturality in Religious Education Through Japanese and East Asian Religions

    Get PDF
    This work addresses the theme of Japanese religions in order to rethink theories and practices pertaining to the field of Religious Education. Through an interdisciplinary framework that combines the study of religions, didactics and intercultural education, this book puts the case study of Religious Education in England in front of two ‘challenges’ in order to reveal hidden spots, tackle unquestioned assumptions and highlight problematic areas. These ‘challenges’, while focusing primarily on Japanese religions, are addressed within the wider contexts of other East Asian traditions and of the modern historical exchanges with the Euro-American societies. As result, a model for teaching Japanese and other East Asian religions is discussed and proposed in order to fruitfully engage issues such as orientalism, occidentalism, interculturality and critical thinking

    Derived C∞C^{\infty}-Geometry I: Foundations

    Full text link
    This work is the first in a series laying the foundations of derived geometry in the C∞C^{\infty} setting, and providing tools for the construction and study of moduli spaces of solutions of Partial Differential Equations that arise in differential geometry and mathematical physics. To advertise the advantages of such a theory, we start with a detailed introduction to derived C∞C^{\infty}-geometry in the context of symplectic topology and compare and contrast with Kuranishi space theory. In the body of this work, we avail ourselves of Lurie's extensive work on abstract structured spaces to define ∞\infty-categories of derived C∞C^{\infty}-ring and C∞C^{\infty}-schemes and derived C∞C^{\infty}-rings and C∞C^{\infty}-schemes with corners via a universal property in a suitable (∞,2)(\infty,2)-category of ∞\infty-categories with respect to the ordinary categories of manifolds and manifolds with corners (with morphisms the bb-maps of Melrose in the latter case), and prove many basic structural features about them. Along the way, we establish some derived flatness results for derived C∞C^{\infty}-rings of independent interest.Comment: 203 pages; comments welcom
    • 

    corecore