5,883 research outputs found

    Soft touchless sensors and touchless sensing for soft robots

    Get PDF
    Soft robots are characterized by their mechanical compliance, making them well-suited for various bio-inspired applications. However, the challenge of preserving their flexibility during deployment has necessitated using soft sensors which can enhance their mobility, energy efficiency, and spatial adaptability. Through emulating the structure, strategies, and working principles of human senses, soft robots can detect stimuli without direct contact with soft touchless sensors and tactile stimuli. This has resulted in noteworthy progress within the field of soft robotics. Nevertheless, soft, touchless sensors offer the advantage of non-invasive sensing and gripping without the drawbacks linked to physical contact. Consequently, the popularity of soft touchless sensors has grown in recent years, as they facilitate intuitive and safe interactions with humans, other robots, and the surrounding environment. This review explores the emerging confluence of touchless sensing and soft robotics, outlining a roadmap for deployable soft robots to achieve human-level dexterity

    The electrofabrication of di- and tripeptide hydrogels and their subsequent material properties

    Get PDF
    In this thesis, we report the ability to fabricate hydrogels using low molecular weight gelators (LMWGs) and the subsequent characterisation of their mechanical properties over a variety of different length scales. These materials have been investigated due to their potential use in a wide range of biomedical applications including drug delivery, tissue engineering, cell culture and wound healing. We describe the localised gelation of LMWGs on electrode surfaces via electrochemically generated pH gradients. The electrofabrication of hydrogels on electrode surfaces has shown great potential in the field of biomedicine, with applications ranging from antimicrobial wound dressings, tissue engineering scaffolds and biomimetic materials. First, we describe the largest reported di- and tri-peptide-based hydrogels on electrode surfaces via the electrochemical oxidation of hydroquinone. Expanding upon previous work which focuses on the fabrication of hydrogels on the nanometre to millimetre scale, we deposit hydrogels around 3 cm3 in size. Furthermore, we demonstrate that there is an upper limit to how large the hydrogels can grow which is determined by the size of the pH gradient from the electrode surface. To grow hydrogels of this size, much longer deposition times of two to five hours are required than in previous reports. When the gelator/hydroquinone solution is left exposed to the open atmosphere for this amount of time, the hydroquinone in solution oxidises to benzoquinone/quinhydrone before it can be consumed electrochemically. This inhibits the electrochemical reaction and reduces gelation efficiency. To prevent this, we build a system that can perform the fabrication process under an inert nitrogen atmosphere. Using this system, we show how the choice of gelator affects the mechanical properties of the hydrogel and the resulting material phenomena that cause these changes. As well as this, we show how this approach can be used to grow multi-layered hydrogels, with each layer presenting different chemical and mechanical properties. Secondly, we report the first known example of electrodeposition for a LMWG molecule using an electrochemically generated basic pH gradient at electrode surfaces. This approach has previously been used to fabricate hydrogels of the biopolymer chitosan using the galvanostatic reduction of hydrogen peroxide. During the electrochemical reduction of hydrogen peroxide, hydroxide ions are produced. As a result, a basic pH zone is generated at the electrode, triggering solutions of chitosan to form immobilised hydrogels on the electrode surface. Using this approach, we show how electrodeposition at high pH can be applied to our LMWG system. We then show that we can electrochemically form hydrogels at high pH, with the gel properties being greatly improved by the addition and increased concentration of hydrogen peroxide. Following from this, we then show the simultaneous formation of two low molecular weight hydrogels at acidic and basic pH extremes. To achieve this, we couple the electrochemical reduction of hydrogen peroxide and the electrochemical oxidation of hydroquinone described in the previous chapter. Finally, we report the electrodeposition of five carbazole-protected amino acid hydrogels on electrode surfaces via the electrochemical oxidation of hydroquinone. As well as this, we report the full to partial electropolymerisation of the pre-assembled hydrogels in perchloric acid. For the less bulky carbazole-protected amino acids, the full collapse of the hydrogel to form electrochromic polymers on the electrode surface is achieved. However, for the bulkier gelators, little to no evidence of polymerisation occurs. We believe this is due to the bulky side chain on the gelator backbone preventing the molecular reorganization required for polymerization to occur. To probe the primary self-assembled structures of the carbazole-based hydrogels growing in-situ and their full to partial electropolymerisation in perchloric acid, a first-of-its-kind experiment was performed using small-angle X-ray scattering (SAXS) at Diamond Light Source (I22 beamline, Oxfordshire, UK). We present the novel SAXS set-up discussed as a tool to open up new opportunities to probe and analyse soft materials in realtime

    Development of a SQUID magnetometry system for cryogenic neutron electric dipole moment experiment

    Get PDF
    A measurement of the neutron electric dipole moment (nEDM) could hold the key to understanding why the visible universe is the way it is: why matter should predominate over antimatter. As a charge-parity violating (CPV) quantity, an nEDM could provide an insight into new mechanisms that address this baryon asymmetry. The motivation for an improved sensitivity to an nEDM is to find it to be non-zero at a level consistent with certain beyond the Standard Model theories that predict new sources of CPV, or to establish a new limit that constrains them. CryoEDM is an experiment that sought to better the current limit of dn<2.9×1026e|d_n| < 2.9 \times 10^{-26}\,e\,cm by an order of magnitude. It is designed to measure the nEDM via the Ramsey Method of Separated Oscillatory Fields, in which it is critical that the magnetic field remains stable throughout. A way of accurately tracking the magnetic fields, moreover at a temperature 0.5\sim 0.5\,K, is crucial for CryoEDM, and for future cryogenic projects. This thesis presents work focussing on the development of a 12-SQUID magnetometry system for CryoEDM, that enables the magnetic field to be monitored to a precision of 0.10.1\,pT. A major component of its infrastructure is the superconducting capillary shields, which screen the input lines of the SQUIDs from the pick up of spurious magnetic fields that will perturb a SQUID's measurement. These are shown to have a transverse shielding factor of >1×107> 1 \times 10^{7}, which is a few orders of magnitude greater than the calculated requirement. Efforts to characterise the shielding of the SQUID chips themselves are also discussed. The use of Cryoperm for shields reveals a tension between improved SQUID noise and worse neutron statistics. Investigations show that without it, SQUIDs have an elevated noise when cooled in a substantial magnetic field; with it, magnetostatic simulations suggest that it is detrimental to the polarisation of neutrons in transport. The findings suggest that with proper consideration, it is possible to reach a compromise between the two behaviours. Computational work to develop a simulation of SQUID data is detailed, which is based on the Laplace equation for the magnetic scalar potential. These data are ultimately used in the development of a linear regression technique to determine the volume-averaged magnetic field in the neutron cells. This proves highly effective in determining the fields within the 0.10.1\,pT requirement under certain conditions

    Mechanical characterization, constitutive modeling and applications of ultra-soft magnetorheological elastomers

    Get PDF
    Mención Internacional en el título de doctorSmart materials are bringing sweeping changes in the way humans interact with engineering devices. A myriad of state-of-the-art applications are based on novel ways to actuate on structures that respond under different types of stimuli. Among them, materials that respond to magnetic fields allow to remotely modify their mechanical properties and macroscopic shape. Ultra-soft magnetorheological elastomers (MREs) are composed of a highly stretchable soft elastomeric matrix in the order of 1 kPa and magnetic particles embedded in it. This combination allows large deformations with small external actuations. The type of the magnetic particles plays a crucial role as it defines the reversibility or remanence of the material magnetization. According to the fillers used, MREs are referred to as soft-magnetic magnetorheological elastomers (sMREs) and hard-magnetic magnetorheological elastomers (hMREs). sMREs exhibit strong changes in their mechanical properties when an external magnetic field is applied, whereas hMREs allow sustained magnetic effects along time and complex shape-morphing capabilities. In this regard, end-of-pipe applications of MREs in the literature are based on two major characteristics: the modification of their mechanical properties and macrostructural shape changes. For instance, smart actuators, sensors and soft robots for bioengineering applications are remotely actuated to perform functional deformations and autonomous locomotion. In addition, hMREs have been used for industrial applications, such as damping systems and electrical machines. From the analysis of the current state of the art, we identified some impediments to advance in certain research fields that may be overcome with new solutions based on ultrasoft MREs. On the mechanobiology area, we found no available experimental methodologies to transmit complex and dynamic heterogeneous strain patterns to biological systems in a reversible manner. To remedy this shortcoming, this doctoral research proposes a new mechanobiology experimental setup based on responsive ultra-soft MRE biological substrates. Such an endeavor requires deeper insights into the magneto-viscoelastic and microstructural mechanisms of ultra-soft MREs. In addition, there is still a lack of guidance for the selection of the magnetic fillers to be used for MREs and the final properties provided to the structure. Eventually, the great advances on both sMREs and hMREs to date pose a timely question on whether the combination of both types of particles in a hybrid MRE may optimize the multifunctional response of these active structures. To overcome these roadblocks, this thesis provides an extensive and comprehensive experimental characterization of ultra-soft sMREs, hMREs and hybrid MREs. The experimental methodology uncovers magneto-mechanical rate dependences under numerous loading and manufacturing conditions. Then, a set of modeling frameworks allows to delve into such mechanisms and develop three ground-breaking applications. Therefore, the thesis has lead to three main contributions. First and motivated on mechanobiology research, a computational framework guides a sMRE substrate to transmit complex strain patterns in vitro to biological systems. Second, we demonstrate the ability of remanent magnetic fields in hMREs to arrest cracks propagations and improve fracture toughness. Finally, the combination of soft- and hard-magnetic particles is proved to enhance the magnetorheological and magnetostrictive effects, providing promising results for soft robotics.Los materiales inteligentes están generando cambios radicales en la forma que los humanos interactúan con dispositivos ingenieriles. Distintas aplicaciones punteras se basan en formas novedosas de actuar sobre materiales que responden a diferentes estímulos. Entre ellos, las estructuras que responden a campos magnéticos permiten la modificación de manera remota tanto de sus propiedades mecánicas como de su forma. Los elastómeros magnetorreológicos (MREs) ultra blandos están compuestos por una matriz elastomérica con gran ductilidad y una rigidez en torno a 1 kPa, reforzada con partículas magnéticas. Esta combinación permite inducir grandes deformaciones en el material mediante la aplicación de campos magnéticos pequeños. La naturaleza de las partículas magnéticas define la reversibilidad o remanencia de la magnetización del material compuesto. De esta manera, según el tipo de partículas que contengan, los MREs pueden presentar magnetización débil (sMRE) o magnetización fuerte (hMRE). Los sMREs experimentan grandes cambios en sus propiedades mecánicas al aplicar un campo magnético externo, mientras que los hMREs permiten efectos magneto-mecánicos sostenidos a lo largo del tiempo, así como programar cambios de forma complejos. En este sentido, las aplicaciones de los MREs se basan en dos características principales: la modificación de sus propiedades mecánicas y los cambios de forma macroestructurales. Por ejemplo, los campos magnéticos pueden emplearse para inducir deformaciones funcionales en actuadores y sensores inteligentes, o en robótica blanda para bioingeniería. Los hMREs también se han aplicado en el ámbito industrial en sistemas de amortiguación y máquinas eléctricas. A partir del análisis del estado del arte, se identifican algunas limitaciones que impiden el avance en ciertos campos de investigación y que podrían resolverse con nuevas soluciones basadas en MREs ultra blandos. En el área de la mecanobiología, no existen metodologías experimentales para transmitir patrones de deformación complejos y dinámicos a sistemas biológicos de manera reversible. En esta investigación doctoral se propone una configuración experimental novedosa basada en sustratos biológicos fabricados con MREs ultra blandos. Dicha solución requiere la identificación de los mecanismos magneto-viscoelásticos y microestructurales de estos materiales, según el tipo de partículas magnéticas, y las consiguientes propiedades macroscópicas del material. Además, investigaciones recientes en sMREs y hMREs plantean la pregunta sobre si la combinación de distintos tipos de partículas magnéticas en un MRE híbrido puede optimizar su respuesta multifuncional. Para superar estos obstáculos, la presente tesis proporciona una caracterización experimental completa de sMREs, hMREs y MREs híbridos ultra blandos. Estos resultados muestran las dependencias del comportamiento multifuncional del material con la velocidad de aplicación de cargas magneto-mecánicas. El desarrollo de un conjunto de modelos teórico-computacionales permite profundizar en dichos mecanismos y desarrollar aplicaciones innovadoras. De este modo, la tesis doctoral ha dado lugar a tres bloques de aportaciones principales. En primer lugar, este trabajo proporciona un marco computacional para guiar el diseño de sustratos basados en sMREs para transmitir patrones de deformación complejos in vitro a sistemas biológicos. En segundo lugar, se demuestra la capacidad de los campos magnéticos remanentes en los hMRE para detener la propagación de grietas y mejorar la tenacidad a la fractura. Finalmente, se establece que la combinación de partículas magnéticas de magnetización débil y fuerte mejora el efecto magnetorreológico y magnetoestrictivo, abriendo nuevas posibilidades para el diseño de robots blandos.I want to acknowledge the support from the Ministerio de Ciencia, Innovación y Universidades, Spain (FPU19/03874), and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 947723, project: 4D-BIOMAP).Programa de Doctorado en Ingeniería Mecánica y de Organización Industrial por la Universidad Carlos III de MadridPresidente: Ramón Eulalio Zaera Polo.- Secretario: Abdón Pena Francesch.- Vocal: Laura de Lorenzi

    Solid Solution Tetrelides and Pnictides for Thermoelectric Applications

    Get PDF
    Recent major advancements in thermoelectric material performance center around the development and understanding of band structure engineering techniques and phonon scattering mechanisms. Solid solution materials have the potential to access these major strategies simultaneously within a single system. In this thesis, solid solutions of tetrels (C, Si, Ge, Sn, and Pb) and pnictogens (N, P, As, Sb, and Bi) as thermoelectric materials are explored. Electronic structures are examined to understand established materials and propose band engineering strategies. New synthesis approaches for established materials are designed while established methods are utilized to synthesize novel solid solutions. Thermoelectric properties are measured and discussed in terms of the underlying chemistry of the materials. Future work is proposed for the systems studied where improvements can be suggested. Chapter 1 discusses the various principles and strategies underlying the design and application of thermoelectric materials with a focus on solid solution materials. An overview of current high-performance materials and the principles which provide their status is presented. Finally, the classes of materials which are experimentally studied are discussed to provide background and motivation for the research conducted. Chapter 2 reviews the principles and practices for the experimental methods and instrumentation utilized throughout the course of this study. The first solid solution material focused on in Chapter 3 is the tetrelide Mg2Si0.3Sn0.67Bi0.03; a high performance, nontoxic, and inexpensive thermoelectric material. A scaled-up reaction process was developed providing the first steps towards large scale applications. Large, condensed pieces of material were pressed on a scale which had not been achieved previously. Statistical analysis of measured thermoelectric properties is performed on the material using samples cut at various positions and orientations. Over 1 kg of material was prepared which displayed a zTmax above 1.2 reliably. These methods are used to assure a consistent quality of the process and material which is the first step towards establishing device applications. Pnictide-tetrel chalcopyrite solid solutions are investigated in Chapters 4 and 5, with ZnGe1-xSnxP2 explored in the former, while ZnSnP2-yAsy and ZnGe1-xSnxP2-yAsy are explored in the latter. A robust synthesis method for end members and solid solutions was developed using ball milling techniques followed by hot pressing. Successful synthesis and full miscibility of end members and solid solutions are confirmed with powder X-ray diffraction followed by Rietveld refinements. The synthesis method is primarily discussed in Chapter 4 which is further developed for synthesis of higher order solid solutions in Chapter 5. The methods developed provide a useful tool for low temperature synthesis of solid solutions with differently melting and difficult to synthesize end members. Structural investigations conducted on resulting ZnGe1-xSnxP2 (x = 0, 0.25, 0.5, 0.75, and 1), show a tendency for tetragonality (c/(2a)=1) which maintained high Seebeck coefficients for the Sn rich and equal substituted members. Electronic structure calculations with Boltzmann transport analysis and experimental lattice thermal conductivities were used to predict thermoelectric performance. Doping ZnSnP2 with p-type carriers was predicted to give zT = 1 at 0.002 carriers per formula unit and 900 K (such as with ZnSn0.998-In0.002P2), and 1.3 at 0.007 carriers per formula unit. Measured thermoelectric performance was most improved by decreased thermal conductivity due to alloy phonon scattering at equal Ge and Sn substitution (x = 0.5) while maintaining a large Seebeck coefficient. The end members displayed thermal conductivity of 4.4 W m-1 K-1 and 2.5 W m-1 K-1 for Ge and Sn respectively which decreased to 1.8 W m-1 K-1 for x = 0.5 at 875 K. Improvements from zT = 3.9∙10-4 and 2.0∙10-3 for Ge and Sn end members respectively were achieved to zT = 5.5∙10-3 for x = 0.5 at 800 K while increased thermal stability allowed greater performance at higher temperatures. Chapter 5 focuses on improving the carrier concentration of ZnSnP2 and ZnGe1-xSnxP2 by substitution of As for P. The first half of the chapter explores ZnSnP2-yAsy substitutions (y = 0, 0.5, 1, 1.5, and 2) where full miscibility of the solid solutions is achieved. The measured electrical conductivity shows exponential increase with As substitution from 0.03 S cm-1 for ZnSnP2 to 10.3 S cm-1 for ZnSnAs2 at 715 K. Band gaps as calculated from the activation energies showed a steady decrease with increasing As concentration from 1.4 eV for ZnSnP2 to 0.7 eV for ZnSnAs2. The Seebeck coefficient decreases significantly with As substitution from nearly 1000 μV K-1 for the P end member to -100 μV K-1 for the As end member at 650 K. Indications of bipolar conductivity are seen starting with the ZnSnP0.5As1.5 member which decreases down to 100 μV K-1 at 650 K. Thermal conductivity is decreased due to alloy phonon scattering with y = 1 and y = 0.5 showing the lowest values of 1.4 W m-1 K-1 at 825 K. Figure of merit values are increased at lower temperatures when compared to the ZnGe1-xSn¬xP2 series due to increased electrical conductivity, with y = 1 reaching zT = 2.1∙10-3 and y = 2 reaching 2.8∙10-3 at 700 K. The ZnSnP2-yAsy series displayed lower thermal stability and therefore overall lower figures of merit were found. The higher order quinary solid solutions ZnGe1-xSnxP2-yAsy (x = 0.5, 0.75, and y = 0, 0.5, 1, 1.5, and 2) are also studied in Chapter 5. Successful synthesis and structural refinements of the solid solutions were performed with a preference for tetragonality again observed. The alloy phonon scattering effect shows additive behavior which decreased the thermal conductivity further to 0.8 W m-1 K-1 at 775 K for x = 0.75, y = 1 to within the glasslike regime. Transport properties for the x = 0.5 (y = 0, 0.5, 1.5, and 2) series were measured which showed significant improvements compared to properties obtained for quaternary series. Large Seebeck coefficients were maintained despite exponential increase of electrical conductivities with increasing As substitution displaying characteristics similar to high entropy alloys. For ZnGe0.5Sn0.5P0.5As1.5 electrical conductivity increases from 0.02 S cm-1 to 2 S cm-1 while Seebeck coefficient also increases from 500 μV K-1 to 575 μV K-1 between 325 K and 775 K. The resulting thermoelectric performance of ZnGe0.5Sn0.5P0.5As1.5, zT = 0.038, is increased by more than 30-fold of the highest performing end member ZnSnAs2 with greater thermal stability. The final solid solutions explored are the pnictides Ca11Sb10-xBix and Ca11Sb10-yAsy series in Chapter 6. A direct liquid solid synthesis method is performed which succeeds for many attempted samples while some contained elemental impurities. Single crystals of Ca11Sb10-xBix were obtained and structures solved which display coloring substitution effects. A correlation parameter using electronic structure calculations was developed which predicted the substitution effects well. The highest thermoelectric performance was found for Ca11Sb10, with zT = 0.093 at 1000 K, which showed improvement compared to other literature studies of the compound. Evidence of intrastructural suppression of bipolar conductivity is observed resulting in simultaneous increase in Seebeck coefficient and electrical conductivity with increasing temperatures. Bi substitution tended to increase electrical conductivity while decreasing the Seebeck coefficient due to increasing bipolar conductivity. Low thermal conductivity values were measured for all samples with the lowest Ca11Sb10 displayed phonon glass electron crystal like behavior of 0.6 W m-1 K-1 to 0.7 W m-1 K-1 at 300 K and 1050 K respectively

    Investigation into Photon Emissions as a Side-Channel Leakage in Two Microcontrollers: A Focus on SRAM Blocks

    Get PDF
    Microcontrollers are extensively utilized across a diverse range of applications. However, with the escalating usage of these devices, the risk to their security and the valuable data they process correspondingly intensifies. These devices could potentially be susceptible to various security threats, with side channel leakage standing out as a notable concern. Among the numerous types of side-channel leakages, photon emissions from active devices emerge as a potentially significant concern. These emissions, a characteristic of all semiconductor devices including microcontrollers, occur during their operation. Depending on the operating point and the internal state of the chip, these emissions can reflect the device’s internal operations. Therefore, a malicious individual could potentially exploit these emissions to gain insights into the computations being performed within the device. This dissertation delves into the investigation of photon emissions from the SRAM blocks of two distinct microcontrollers, utilizing a cost-effective setup. The aim is to extract information from these emissions, analyzing them as potential side-channel leakage points. In the first segment of the study, a PIC microcontroller variant is investigated. The quiescent photon emissions from the SRAM are examined. A correlation attack was successfully executed on these emissions, which led to the recovery of the AES encryption key. Furthermore, differential analysis was used to examine the location of SRAM bits. The combination of this information with the application of an image processing method, namely the Structural Similarity Index (SSIM), assisted in revealing the content of SRAM cells from photon emission images. The second segment of this study, for the first time, emphasizes on a RISC-V chip, examining the photon emissions of the SRAM during continuous reading. Probing the photon emissions from the row and column detectors led to the identification of a target word location, which is capable of revealing the AES key. Also, the content of target row was retrieved through the photon emissions originating from the drivers and the SRAM cells themselves. Additionally, the SSIM technique was utilized to determine the address of a targeted word in RISC-V photon emissions which cannot be analyzed through visual inspection. The insights gained from this research contribute to a deeper understanding of side-channel leakage via photon emissions and demonstrate its potential potency in extracting critical information from digital devices. Moreover, this information significantly contributes to the development of innovative security measures, an aspect becoming increasingly crucial in our progressively digitized world

    Strategies for Red-Light Photoswitching

    Get PDF
    Vuorovaikutteiset, muotoutuvat ja jopa älykkäät molekyylirakenteet ovat avain uuden sukupolven lääkeaineisiin ja toiminnallisiin materiaaleihin. Valokytkimet eli yhdisteet, jotka isomeroituvat reversiibelisti valon vaikutuksesta johtaen makroskooppisten ominaisuuksien muutoksiin, ovat erottamaton osa tätä tulevaisuutta. Mahdolliset sovelluskohteet ulottuvat lääketieteestä elektroniikkaan ja robotiikkaan. Valitettavasti useimmat valokytkinrakenteet, esimerkiksi laajalti käytetyt atsobentseenit, absorboivat ultraviolettivaloa, joka on vahingollista monille materiaaleille ja erityisesti eläville soluille. Jotta valokytkinten koko potentiaali voidaan hyödyntää, tarvitaan harmittomalla näkyvällä valolla toimivia yhdisteitä. Puna- tai infrapunavalo olisi ihanteellinen ärsyke biologian alalla käytettäville kytkimille. Sama pätee myös molekyylimoottoreihin eli yhdisteisiin, jotka pyörivät valon vaikutuksesta yksisuuntaisesti. Lisäksi sekä kytkinten että moottorien tulisi isomerisoitua valon vaikutuksesta tehokkaasti ja nopeasti, termisten isomerisaatioreaktioiden tulisi olla sovelluskohteesta riippuen hitaita tai nopeita ja yhdisteiden tulisi toimia hyvin erilaisissa ympäristöissä. Näiden ominaisuuksien hallitsemiseksi on tärkeää ymmärtää niiden taustalla olevat mekanismit. Tässä väitöskirjassa tutkimme kolmea keinoa toteuttaa valokytkentä punaisella valolla: (i) atsobentseenien absorptiospektrin siirtäminen rakennetta muokkaamalla, (ii) uusien, valmiiksi punaista valoa absorboivien rakenteiden hyödyntäminen ja (iii) epäsuora valokytkentä punavalolla aktivoitavia katalyyttejä hyödyntäen. Tarkastelemme strategioita teoreettiselta kannalta ja osoitamme, että niistä jokainen mahdollistaa valokytkennän punaista valoa käyttäen. Kullakin strategialla on etunsa ja haasteensa tehokkaan, nopean ja kestävän valokytkennän toteuttamiseksi. Tästä johtuen yksi ihanteellinen valokytkinmalli ei voi saavuttaa kaikkia eri sovelluksille asetettuja tavoitteita, vaan tulevaisuuden haaste on löytää kuhunkin käyttöön paras ratkaisu. Samoja periaatteita voidaan soveltaa myös molekyylimoottoreihin, jolloin molekulaarisen tason yksisuuntainen kiertoliike voidaan saada aikaan näkyvällä valolla. Lisäksi punaisella valolla toimivien valokytkinten rakenteita hyödyntämällä moottorien rotaatiota saadaan tehostettua.Responsive, adaptive and even intelligent molecular systems have been identified as the key to next-generation pharmaceuticals and functional materials. Photoswitches, compounds that isomerise reversibly between two distinct ground-state species upon excitation with light and consequently give rise to a macroscopic effect, are an integral part of this future. Their potential application areas range from photopharmacology to optoelectronics and soft robotics. However, most conventional photoswitch structures such as azobenzenes absorb ultraviolet light, high-energy photons that are detrimental to many artificial materials and especially to living systems. To harness their full potential, photoswitches should function efficiently with visible light that is benign to the environment. Red or near-infrared light would be the ideal stimulus for switches utilised in biological context, as these wavelengths are least absorbed by living tissue. The same applies to light-driven molecular motors, compounds that exhibit unidirectional rotation upon photoexcitation. In addition to absorption in the red part of the visible spectrum, both switches and motors should exhibit efficient and fast photoisomerisation, favourable thermal isomerisation kinetics and tolerance towards different environments in order to be useful in real-life applications. In this light, it is crucial to understand the underlying fundamental mechanisms that govern these attributes. In this thesis, we explore three different approaches to realise photoswitching with red light: (i) synthetic modifications of azobenzenes, (ii) utilisation of new photoswitch cores that inherently absorb low-energy photons, and (iii) indirect isomerisation with red-light photocatalysts. We study each strategy from a theoretical viewpoint and demonstrate that they all provide means to induce isomerisation with red light, each with unique advantages and challenges in terms of promoting efficient, fast and robust switching. As a result, a single optimal photoswitch system cannot be designed; instead, the challenge lies in identifying the best design for each application. The same principles can also be applied to molecular motors, giving rise to visible-light-powered unidirectional rotary motion on a molecular level. We show that drawing inspiration from red-light-absorbing photoswitches has repercussions not only on the visible-light absorption but also on enhanced rotation dynamics

    Characterisation and State Estimation of Magnetic Soft Continuum Robots

    Get PDF
    Minimally invasive surgery has become more popular as it leads to less bleeding, scarring, pain, and shorter recovery time. However, this has come with counter-intuitive devices and steep surgeon learning curves. Magnetically actuated Soft Continuum Robots (SCR) have the potential to replace these devices, providing high dexterity together with the ability to conform to complex environments and safe human interactions without the cognitive burden for the clinician. Despite considerable progress in the past decade in their development, several challenges still plague SCR hindering their full realisation. This thesis aims at improving magnetically actuated SCR by addressing some of these challenges, such as material characterisation and modelling, and sensing feedback and localisation. Material characterisation for SCR is essential for understanding their behaviour and designing effective modelling and simulation strategies. In this work, the material properties of commonly employed materials in magnetically actuated SCR, such as elastic modulus, hyper-elastic model parameters, and magnetic moment were determined. Additionally, the effect these parameters have on modelling and simulating these devices was investigated. Due to the nature of magnetic actuation, localisation is of utmost importance to ensure accurate control and delivery of functionality. As such, two localisation strategies for magnetically actuated SCR were developed, one capable of estimating the full 6 degrees of freedom (DOFs) pose without any prior pose information, and another capable of accurately tracking the full 6-DOFs in real-time with positional errors lower than 4~mm. These will contribute to the development of autonomous navigation and closed-loop control of magnetically actuated SCR
    corecore