383 research outputs found

    Further Open Problems in Membrane Computing

    Get PDF
    A series of open problems and research topics in membrane com- puting are pointed out, most of them suggested by recent developments in this area. Many of these problems have several facets and branchings, and further facets and branchings can surely be found after addressing them in a more careful manner

    Simple gene assembly as a rewriting of directed overlap-inclusion graphs

    Get PDF
    The simple intramolecular model for gene assembly in ciliates consists of three molecular operations, simple Id, simple hi and simple dlad. Mathematical models in terms of signed permutations and signed strings proved limited in capturing some of the combinatorial details of the simple gene assembly process. Brijder and Hoogeboom introduced a new model in terms of overlap-inclusion graphs which could describe two of the three operations of the model and their combinatorial properties. To capture the third operation, we extended their framework to directed overlap-inclusion (DOI) graphs in Azimi et al. (2011) [1]. In this paper we introduce DOI graph-based rewriting rules that capture all three operations of the simple gene assembly model and prove that they are equivalent to the string-based formalization of the model. (C) 2012 Elsevier B.V. All rights reserved

    Two Refinements of the Template-Guided DNA Recombination Model of Ciliate Computing

    Get PDF
    To solve the mystery of the intricate gene unscrambling mechanism in ciliates, various theoretical models for this process have been proposed from the point of view of computation. Two main models are the reversible guided recombination system by Kari and Landweber and the template-guided recombination (TGR) system by Prescott, Ehrenfeucht and Rozenberg, based on two categories of DNA recombination: the pointer guided and the template directed recombination respectively. The latter model has been generalized by Daley and McQuillan. In this thesis, we propose a new approach to generate regular languages using the iterated TGR system with a finite initial language and a finite set of templates, that reduces the size of the template language and the alphabet compared to that of the Daley-McQuillan model. To achieve computational completeness using only finite components we also propose an extension of the contextual template-guided recombination system (CTGR system) by Daley and McQuillan, by adding an extra control called permitting contexts on the usage of templates. Then we prove that our proposed system, the CTGR system using permitting contexts, has the capability to characterize the family of recursively enumerable languages using a finite initial language and a finite set of templates. Lastly, we present a comparison and analysis of the computational power of the reversible guided recombination system and the TGR system. Keywords: ciliates, gene unscrambling, in vivo computing, DNA computing, cellular computing, reversible guided recombination, template-guided recombination

    Macronuclear Genome Sequence of the Ciliate Tetrahymena thermophila, a Model Eukaryote

    Get PDF
    The ciliate Tetrahymena thermophila is a model organism for molecular and cellular biology. Like other ciliates, this species has separate germline and soma functions that are embodied by distinct nuclei within a single cell. The germline-like micronucleus (MIC) has its genome held in reserve for sexual reproduction. The soma-like macronucleus (MAC), which possesses a genome processed from that of the MIC, is the center of gene expression and does not directly contribute DNA to sexual progeny. We report here the shotgun sequencing, assembly, and analysis of the MAC genome of T. thermophila, which is approximately 104 Mb in length and composed of approximately 225 chromosomes. Overall, the gene set is robust, with more than 27,000 predicted protein-coding genes, 15,000 of which have strong matches to genes in other organisms. The functional diversity encoded by these genes is substantial and reflects the complexity of processes required for a free-living, predatory, single-celled organism. This is highlighted by the abundance of lineage-specific duplications of genes with predicted roles in sensing and responding to environmental conditions (e.g., kinases), using diverse resources (e.g., proteases and transporters), and generating structural complexity (e.g., kinesins and dyneins). In contrast to the other lineages of alveolates (apicomplexans and dinoflagellates), no compelling evidence could be found for plastid-derived genes in the genome. UGA, the only T. thermophila stop codon, is used in some genes to encode selenocysteine, thus making this organism the first known with the potential to translate all 64 codons in nuclear genes into amino acids. We present genomic evidence supporting the hypothesis that the excision of DNA from the MIC to generate the MAC specifically targets foreign DNA as a form of genome self-defense. The combination of the genome sequence, the functional diversity encoded therein, and the presence of some pathways missing from other model organisms makes T. thermophila an ideal model for functional genomic studies to address biological, biomedical, and biotechnological questions of fundamental importance

    Models of natural computation : gene assembly and membrane systems

    Get PDF
    This thesis is concerned with two research areas in natural computing: the computational nature of gene assembly and membrane computing. Gene assembly is a process occurring in unicellular organisms called ciliates. During this process genes are transformed through cut-and-paste operations. We study this process from a theoretical point of view. More specifically, we relate the theory of gene assembly to sorting by reversal, which is another well-known theory of DNA transformation. In this way we obtain a novel graph-theoretical representation that provides new insights into the nature of gene assembly. Membrane computing is a computational model inspired by the functioning of membranes in cells. Membrane systems compute in a parallel fashion by moving objects, through membranes, between compartments. We study the computational power of various classes of membrane systems, and also relate them to other well-known models of computation.Netherlands Organisation for Scientific Research (NWO), Institute for Programming research and Algorithmics (IPA)UBL - phd migration 201

    Contingency and Statistical Laws in Replicate Microbial Closed Ecosystems

    Get PDF
    SummaryContingency, the persistent influence of past random events, pervades biology. To what extent, then, is each course of ecological or evolutionary dynamics unique, and to what extent are these dynamics subject to a common statistical structure? Addressing this question requires replicate measurements to search for emergent statistical laws. We establish a readily replicated microbial closed ecosystem (CES), sustaining its three species for years. We precisely measure the local population density of each species in many CES replicates, started from the same initial conditions and kept under constant light and temperature. The covariation among replicates of the three species densities acquires a stable structure, which could be decomposed into discrete eigenvectors, or “ecomodes.” The largest ecomode dominates population density fluctuations around the replicate-average dynamics. These fluctuations follow simple power laws consistent with a geometric random walk. Thus, variability in ecological dynamics can be studied with CES replicates and described by simple statistical laws
    corecore