3,585 research outputs found

    Leader-following consensus for lower-triangular nonlinear multi-agent systems with unknown controller and measurement sensitivities

    Get PDF
    summary:In this paper, a novel consensus algorithm is presented to handle with the leader-following consensus problem for lower-triangular nonlinear MASs (multi-agent systems) with unknown controller and measurement sensitivities under a given undirected topology. As distinguished from the existing results, the proposed consensus algorithm can tolerate to a relative wide range of controller and measurement sensitivities. We present some important matrix inequalities, especially a class of matrix inequalities with multiplicative noises. Based on these results and a dual-domination gain method, the output consensus error with unknown measurement noises can be used to construct the compensator for each follower directly. Then, a new distributed output feedback control is designed to enable the MASs to reach consensus in the presence of large controller perturbations. In view of a Lyapunov function, sufficient conditions are presented to guarantee that the states of the leader and followers can achieve consensus asymptotically. In the end, the proposed consensus algorithm is tested and verified by an illustrative example

    Multidimensional Taylor Network Optimal Control of MIMO Nonlinear Systems without Models for Tracking by Output Feedback

    Get PDF
    The actual controlled objects are generally multi-input and multioutput (MIMO) nonlinear systems with imprecise models or even without models, so it is one of the hot topics in the control theory. Due to the complex internal structure, the general control methods without models tend to be based on neural networks. However, the neuron of neural networks includes the exponential function, which contributes to the complexity of calculation, making the neural network control unable to meet the real-time requirements. The newly developed multidimensional Taylor network (MTN) requires only addition and multiplication, so it is easy to realize real-time control. In the present study, the MTN approach is extended to MIMO nonlinear systems without models to realize adaptive output feedback control. The MTN controller is proposed to guarantee the stability of the closed-loop system. Our experimental results show that the output signals of the system are bounded and the tracking error goes nearly to zero. The MTN optimal controller is proven to promise far better real-time dynamic performance and robustness than the BP neural network self-adaption reconstitution controller

    Neural Networks for Modeling and Control of Particle Accelerators

    Full text link
    We describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.Comment: 21 p
    • …
    corecore