2,296 research outputs found

    A brief review of neural networks based learning and control and their applications for robots

    Get PDF
    As an imitation of the biological nervous systems, neural networks (NN), which are characterized with powerful learning ability, have been employed in a wide range of applications, such as control of complex nonlinear systems, optimization, system identification and patterns recognition etc. This article aims to bring a brief review of the state-of-art NN for the complex nonlinear systems. Recent progresses of NNs in both theoretical developments and practical applications are investigated and surveyed. Specifically, NN based robot learning and control applications were further reviewed, including NN based robot manipulator control, NN based human robot interaction and NN based behavior recognition and generation

    Nonlinear Systems Identification Using Additive Dynamic Neural Networks--Two On Line Approaches.

    Get PDF
    This paper proposes a class of additive dynamic connectionist (ADC) models for identification of unknown dynamic systems. These models work in continuous time and are linear in their parameters. Also, for this kind of model two on-line learning or parameter adaptation algorithms are developed: one based on gradient techniques and sensitivity analysis of the model output trajectories versus the model parameters and the other based on variational calculus, that lead to an off-line solution and an invariant imbedding technique that converts the off-line solution to an on-line one. These learning methods are developed using matrix calculus techniques in order to implement them in an automatic manner with the help of a symbolic manipulation package. The good behavior of the class of identification models and the two learning methods is tested on two simulated plants and a data set from a real plant and compared, in this case, with a feedforward static (FFS) identifier.Peer Reviewe

    Linearization of RF Power Amplifiers Using Adaptive Kalman Filtering Algorithm

    No full text
    International audienceIn this paper, a new linearization algorithm of Power Amplifier, based on Kalman filtering theory is proposed for obtaining fast convergence of the adaptive digital predistortion. The proposed method uses the real-time digital processing of baseband signals to compensate the nonlinearities and memory effects in radio-frequency Power Amplifier. To reduce the complexity of computing in classical Kalman Filtering, a sliding time-window has been inserted which combines off-line measurement and on-line parameter estimation with high sampling time to track the changes in the PA characteristics. We evaluated the performance of the proposed linearization scheme through simulation and experiments. Using digital signal processing, experimental results with commercial power amplifier are presented for multicarrier signals to demonstrate the effectiveness of this new approach
    • …
    corecore