75,285 research outputs found

    Complex Dynamics of Autonomous Communication Networks and the Intelligent Communication Paradigm

    Get PDF
    Dynamics of arbitrary communication system is analysed as unreduced interaction process. The applied generalised, universally nonperturbative method of effective potential reveals the phenomenon of dynamic multivaluedness of competing system configurations forced to permanently replace each other in a causally random order, which leads to universally defined dynamical chaos, complexity, fractality, self-organisation, and adaptability. We demonstrate the origin of huge, exponentially high efficiency of the unreduced, complex network dynamics and specify the universal symmetry of complexity as the fundamental guiding principle for creation and control of such qualitatively new kind of networks and devices. The emerging intelligent communication paradigm and its practical realisation in the form of knowledge-based networks involve the properties of true, unreduced intelligence and consciousness (http://cogprints.ecs.soton.ac.uk/archive/00003857/) appearing in the complex (multivalued) network dynamics and results

    Dynamic complexity of autonomic communication and software systems

    Get PDF
    Dynamics of arbitrary communication and software system is analysed as unreduced interaction process. The applied generalised, universally nonperturbative method of effective potential reveals the phenomenon of dynamic multivaluedness of competing system configurations forced to permanently replace each other in a dynamically random order, which leads to universally defined dynamical chaos, complexity, fractality, self-organisation, and adaptability. We demonstrate the origin of the huge, exponentially high efficiency of the unreduced, complex network and software dynamics and specify the universal symmetry of complexity as the fundamental guiding principle for creation and control of such qualitatively new kind of network and software systems. Practical aspects of ICT complexity transition are outlined.5th IFIP International Conference on Network Control & Engineering for QoS, Security and MobilityRed de Universidades con Carreras en Informática (RedUNCI

    Unreduced Dynamic Complexity: Towards the Unified Science of Intelligent Communication Networks and Software

    Get PDF
    Operation of autonomic communication networks with complicated user-oriented functions should be described as unreduced many-body interaction process. The latter gives rise to complex-dynamic behaviour including fractally structured hierarchy of chaotically changing realisations. We recall the main results of the universal science of complexity (http://cogprints.org/4471/) based on the unreduced interaction problem solution and its application to various real systems, from nanobiosystems (http://cogprints.org/4527/) and quantum devices to intelligent networks (http://cogprints.org/4114/) and emerging consciousness (http://cogprints.org/3857/). We concentrate then on applications to autonomic communication leading to fundamentally substantiated, exact science of intelligent communication and software. It aims at unification of the whole diversity of complex information system behaviour, similar to the conventional, "Newtonian" science order for sequential, regular models of system dynamics. Basic principles and first applications of the unified science of complex-dynamic communication networks and software are outlined to demonstrate its advantages and emerging practical perspectives

    Dynamic complexity of autonomic communication and software systems

    Get PDF
    Dynamics of arbitrary communication and software system is analysed as unreduced interaction process. The applied generalised, universally nonperturbative method of effective potential reveals the phenomenon of dynamic multivaluedness of competing system configurations forced to permanently replace each other in a dynamically random order, which leads to universally defined dynamical chaos, complexity, fractality, self-organisation, and adaptability. We demonstrate the origin of the huge, exponentially high efficiency of the unreduced, complex network and software dynamics and specify the universal symmetry of complexity as the fundamental guiding principle for creation and control of such qualitatively new kind of network and software systems. Practical aspects of ICT complexity transition are outlined.5th IFIP International Conference on Network Control & Engineering for QoS, Security and MobilityRed de Universidades con Carreras en Informática (RedUNCI

    Complexity, BioComplexity, the Connectionist Conjecture and Ontology of Complexity\ud

    Get PDF
    This paper develops and integrates major ideas and concepts on complexity and biocomplexity - the connectionist conjecture, universal ontology of complexity, irreducible complexity of totality & inherent randomness, perpetual evolution of information, emergence of criticality and equivalence of symmetry & complexity. This paper introduces the Connectionist Conjecture which states that the one and only representation of Totality is the connectionist one i.e. in terms of nodes and edges. This paper also introduces an idea of Universal Ontology of Complexity and develops concepts in that direction. The paper also develops ideas and concepts on the perpetual evolution of information, irreducibility and computability of totality, all in the context of the Connectionist Conjecture. The paper indicates that the control and communication are the prime functionals that are responsible for the symmetry and complexity of complex phenomenon. The paper takes the stand that the phenomenon of life (including its evolution) is probably the nearest to what we can describe with the term “complexity”. The paper also assumes that signaling and communication within the living world and of the living world with the environment creates the connectionist structure of the biocomplexity. With life and its evolution as the substrate, the paper develops ideas towards the ontology of complexity. The paper introduces new complexity theoretic interpretations of fundamental biomolecular parameters. The paper also develops ideas on the methodology to determine the complexity of “true” complex phenomena.\u
    corecore