26,590 research outputs found

    Can One Trust Quantum Simulators?

    Full text link
    Various fundamental phenomena of strongly-correlated quantum systems such as high-TcT_c superconductivity, the fractional quantum-Hall effect, and quark confinement are still awaiting a universally accepted explanation. The main obstacle is the computational complexity of solving even the most simplified theoretical models that are designed to capture the relevant quantum correlations of the many-body system of interest. In his seminal 1982 paper [Int. J. Theor. Phys. 21, 467], Richard Feynman suggested that such models might be solved by "simulation" with a new type of computer whose constituent parts are effectively governed by a desired quantum many-body dynamics. Measurements on this engineered machine, now known as a "quantum simulator," would reveal some unknown or difficult to compute properties of a model of interest. We argue that a useful quantum simulator must satisfy four conditions: relevance, controllability, reliability, and efficiency. We review the current state of the art of digital and analog quantum simulators. Whereas so far the majority of the focus, both theoretically and experimentally, has been on controllability of relevant models, we emphasize here the need for a careful analysis of reliability and efficiency in the presence of imperfections. We discuss how disorder and noise can impact these conditions, and illustrate our concerns with novel numerical simulations of a paradigmatic example: a disordered quantum spin chain governed by the Ising model in a transverse magnetic field. We find that disorder can decrease the reliability of an analog quantum simulator of this model, although large errors in local observables are introduced only for strong levels of disorder. We conclude that the answer to the question "Can we trust quantum simulators?" is... to some extent.Comment: 20 pages. Minor changes with respect to version 2 (some additional explanations, added references...

    The Road to Quantum Computational Supremacy

    Full text link
    We present an idiosyncratic view of the race for quantum computational supremacy. Google's approach and IBM challenge are examined. An unexpected side-effect of the race is the significant progress in designing fast classical algorithms. Quantum supremacy, if achieved, won't make classical computing obsolete.Comment: 15 pages, 1 figur

    Universal Set of Gates for Microwave Dressed-State Quantum Computing

    Full text link
    We propose a set of techniques that enable universal quantum computing to be carried out using dressed states. This applies in particular to the effort of realising quantum computation in trapped ions using long-wavelength radiation, where coupling enhancement is achieved by means of static magnetic-field gradient. We show how the presence of dressing fields enables the construction of robust single and multi-qubit gates despite the unavoidable presence of magnetic noise, an approach that can be generalised to provide shielding in any analogous quantum system that relies on the coupling of electronic degrees of freedom via bosonic modes

    Direct certification of a class of quantum simulations

    Get PDF
    One of the main challenges in the field of quantum simulation and computation is to identify ways to certify the correct functioning of a device when a classical efficient simulation is not available. Important cases are situations in which one cannot classically calculate local expectation values of state preparations efficiently. In this work, we develop weak-membership formulations of the certification of ground state preparations. We provide a non-interactive protocol for certifying ground states of frustration-free Hamiltonians based on simple energy measurements of local Hamiltonian terms. This certification protocol can be applied to classically intractable analog quantum simulations: For example, using Feynman-Kitaev Hamiltonians, one can encode universal quantum computation in such ground states. Moreover, our certification protocol is applicable to ground states encodings of IQP circuits demonstration of quantum supremacy. These can be certified efficiently when the error is polynomially bounded.Comment: 10 pages, corrected a small error in Eqs. (2) and (5

    Quantum Cellular Automata Pseudo-Random Maps

    Full text link
    Quantum computation based on quantum cellular automata (QCA) can greatly reduce the control and precision necessary for experimental implementations of quantum information processing. A QCA system consists of a few species of qubits in which all qubits of a species evolve in parallel. We show that, in spite of its inherent constraints, a QCA system can be used to study complex quantum dynamics. To this aim, we demonstrate scalable operations on a QCA system that fulfill statistical criteria of randomness and explore which criteria of randomness can be fulfilled by operators from various QCA architectures. Other means of realizing random operators with only a few independent operators are also discussed.Comment: 7 pages, 8 figures, submitted to PR

    Multi-objective optimization of a wing fence on an unmanned aerial vehicle using surrogate-derived gradients

    Get PDF
    In this paper, the multi-objective, multifidelity optimization of a wing fence on an unmanned aerial vehicle (UAV) near stall is presented. The UAV under consideration is characterized by a blended wing body (BWB), which increases its efficiency, and a tailless design, which leads to a swept wing to ensure longitudinal static stability. The consequence is a possible appearance of a nose-up moment, loss of lift initiating at the tips, and reduced controllability during landing, commonly referred to as tip stall. A possible solution to counter this phenomenon is wing fences: planes placed on top of the wing aligned with the flow and developed from the idea of stopping the transverse component of the boundary layer flow. These are optimized to obtain the design that would fence off the appearance of a pitch-up moment at high angles of attack, without a significant loss of lift and controllability. This brings forth a constrained multi-objective optimization problem. The evaluations are performed through unsteady Reynolds-Averaged Navier-Stokes (URANS) simulations. However, since controllability cannot be directly assessed through computational fluid dynamics (CFD), surrogate-derived gradients are used. An efficient global optimization framework is developed employing surrogate modeling, namely regressive co-Kriging, updated using a multi-objective formulation of the expected improvement. The result is a wing fence design that extends the flight envelope of the aircraft, obtained with a feasible computational budget

    Quantum information with continuous variables

    Full text link
    Quantum information is a rapidly advancing area of interdisciplinary research. It may lead to real-world applications for communication and computation unavailable without the exploitation of quantum properties such as nonorthogonality or entanglement. We review the progress in quantum information based on continuous quantum variables, with emphasis on quantum optical implementations in terms of the quadrature amplitudes of the electromagnetic field.Comment: accepted for publication in Reviews of Modern Physic
    • …
    corecore