53,720 research outputs found

    Ghost story. III. Back to ghost number zero

    Full text link
    After having defined a 3-strings midpoint-inserted vertex for the bc system, we analyze the relation between gh=0 states (wedge states) and gh=3 midpoint duals. We find explicit and regular relations connecting the two objects. In the case of wedge states this allows us to write down a spectral decomposition for the gh=0 Neumann matrices, despite the fact that they are not commuting with the matrix representation of K1. We thus trace back the origin of this noncommutativity to be a consequence of the imaginary poles of the wedge eigenvalues in the complex k-plane. With explicit reconstruction formulas at hand for both gh=0 and gh=3, we can finally show how the midpoint vertex avoids this intrinsic noncommutativity at gh=0, making everything as simple as the zero momentum matter sector.Comment: 40 pages. v2: typos and minor corrections, presentation improved in sect. 4.3, plots added in app. A.1, two refs added. To appear in JHE

    Syntax without Abstract Objects

    Get PDF
    In line with the nominalistic denial of the existence of abstract objects, a basic theory of syntax for formal languages is developed and shown to satisfy certain fundamental requirements

    Lossy compression of discrete sources via Viterbi algorithm

    Full text link
    We present a new lossy compressor for discrete-valued sources. For coding a sequence xnx^n, the encoder starts by assigning a certain cost to each possible reconstruction sequence. It then finds the one that minimizes this cost and describes it losslessly to the decoder via a universal lossless compressor. The cost of each sequence is a linear combination of its distance from the sequence xnx^n and a linear function of its kthk^{\rm th} order empirical distribution. The structure of the cost function allows the encoder to employ the Viterbi algorithm to recover the minimizer of the cost. We identify a choice of the coefficients comprising the linear function of the empirical distribution used in the cost function which ensures that the algorithm universally achieves the optimum rate-distortion performance of any stationary ergodic source in the limit of large nn, provided that kk diverges as o(logn)o(\log n). Iterative techniques for approximating the coefficients, which alleviate the computational burden of finding the optimal coefficients, are proposed and studied.Comment: 26 pages, 6 figures, Submitted to IEEE Transactions on Information Theor

    Correlation functions of three heavy operators - the AdS contribution

    Get PDF
    We consider operators in N=4 SYM theory which are dual, at strong coupling, to classical strings rotating in S^5. Three point correlation functions of such operators factorize into a universal contribution coming from the AdS part of the string sigma model and a state-dependent S^5 contribution. Consequently a similar factorization arises for the OPE coefficients. In this paper we evaluate the AdS universal factor of the OPE coefficients which is explicitly expressed just in terms of the anomalous dimensions of the three operators.Comment: 49 pages, 3 figures; v.2 references corrected; v3: corrected discussion in section 5, results unchange

    Sparticle Spectra and LHC Signatures for Large Volume String Compactifications

    Full text link
    We study the supersymmetric particle spectra and LHC collider observables for the large-volume string models with a fundamental scale of 10^{11} GeV that arise in moduli-fixed string compactifications with branes and fluxes. The presence of magnetic fluxes on the brane world volume, required for chirality, perturb the soft terms away from those previously computed in the dilute-flux limit. We use the difference in high-scale gauge couplings to estimate the magnitude of this perturbation and study the potential effects of the magnetic fluxes by generating many random spectra with the soft terms perturbed around the dilute flux limit. Even with a 40% variation in the high-scale soft terms the low-energy spectra take a clear and predictive form. The resulting spectra are broadly similar to those arising on the SPS1a slope, but more degenerate. In their minimal version the models predict the ratios of gaugino masses to be M_1 : M_2 : M_3=(1.5 - 2) : 2 : 6, different to both mSUGRA and mirage mediation. Among the scalars, the squarks tend to be lighter and the sleptons heavier than for comparable mSUGRA models. We generate 10 fb^{-1} of sample LHC data for the random spectra in order to study the range of collider phenomenology that can occur. We perform a detailed mass reconstruction on one example large-volume string model spectrum. 100 fb^{-1} of integrated luminosity is sufficient to discriminate the model from mSUGRA and aspects of the sparticle spectrum can be accurately reconstructed.Comment: 42 pages, 21 figures. Added references and discussion for section 3. Slight changes in the tex

    On the Combinatorial Version of the Slepian-Wolf Problem

    Full text link
    We study the following combinatorial version of the Slepian-Wolf coding scheme. Two isolated Senders are given binary strings XX and YY respectively; the length of each string is equal to nn, and the Hamming distance between the strings is at most αn\alpha n. The Senders compress their strings and communicate the results to the Receiver. Then the Receiver must reconstruct both strings XX and YY. The aim is to minimise the lengths of the transmitted messages. For an asymmetric variant of this problem (where one of the Senders transmits the input string to the Receiver without compression) with deterministic encoding a nontrivial lower bound was found by A.Orlitsky and K.Viswanathany. In our paper we prove a new lower bound for the schemes with syndrome coding, where at least one of the Senders uses linear encoding of the input string. For the combinatorial Slepian-Wolf problem with randomized encoding the theoretical optimum of communication complexity was recently found by the first author, though effective protocols with optimal lengths of messages remained unknown. We close this gap and present a polynomial time randomized protocol that achieves the optimal communication complexity.Comment: 20 pages, 14 figures. Accepted to IEEE Transactions on Information Theory (June 2018
    corecore