139,257 research outputs found

    Universal Polarization

    Full text link
    A method to polarize channels universally is introduced. The method is based on combining two distinct channels in each polarization step, as opposed to Arikan's original method of combining identical channels. This creates an equal number of only two types of channels, one of which becomes progressively better as the other becomes worse. The locations of the good polarized channels are independent of the underlying channel, guaranteeing universality. Polarizing the good channels further with Arikan's method results in universal polar codes of rate 1/2. The method is generalized to construct codes of arbitrary rates. It is also shown that the less noisy ordering of channels is preserved under polarization, and thus a good polar code for a given channel will perform well over a less noisy one.Comment: Submitted to the IEEE Transactions on Information Theor

    Universal features of cell polarization processes

    Full text link
    Cell polarization plays a central role in the development of complex organisms. It has been recently shown that cell polarization may follow from the proximity to a phase separation instability in a bistable network of chemical reactions. An example which has been thoroughly studied is the formation of signaling domains during eukaryotic chemotaxis. In this case, the process of domain growth may be described by the use of a constrained time-dependent Landau-Ginzburg equation, admitting scale-invariant solutions {\textit{\`a la}} Lifshitz and Slyozov. The constraint results here from a mechanism of fast cycling of molecules between a cytosolic, inactive state and a membrane-bound, active state, which dynamically tunes the chemical potential for membrane binding to a value corresponding to the coexistence of different phases on the cell membrane. We provide here a universal description of this process both in the presence and absence of a gradient in the external activation field. Universal power laws are derived for the time needed for the cell to polarize in a chemotactic gradient, and for the value of the smallest detectable gradient. We also describe a concrete realization of our scheme based on the analysis of available biochemical and biophysical data.Comment: Submitted to Journal of Statistical Mechanics -Theory and Experiment

    A waveguide polarization toolset design based on mode beating

    Get PDF
    A toolset of waveguide elements is examined, which can be combined to produce polarization functional devices in a single contiguous waveguide. In particular, waveguide implementations of an optical isolator and a polarization modulator are discussed. The waveguide elements, i.e., quasi-phase-matched nonreciprocal polarization mode converter, reciprocal polarization mode converter (R-PMC), and a differential phase shifter, are all based on mode beating. A universal 3-dB R-PMC specification is identified, which suffices for all the polarization functional devices considered here. A full-vectorial modesolver is used to determine the modes in a number of example III–V waveguide structures, and the polarization state evolution is considered by using an averaged Stokes vector illustrated on the Poincaré sphere constr

    Realization of the Optimal Universal Quantum Entangler

    Full text link
    We present the first experimental demonstration of the ''optimal'' and ''universal'' quantum entangling process involving qubits encoded in the polarization of single photons. The structure of the ''quantum entangling machine'' consists of the quantum injected optical parametric amplifier by which the contextual realization of the 1->2 universal quantum cloning and of the universal NOT (U-NOT) gate has also been achieved.Comment: 10 pages, 3 figures, to appear in Physical Review

    MUonE sensitivity to new physics explanations of the muon anomalous magnetic moment

    Full text link
    The MUonE experiment aims at a precision measurement of the hadronic vacuum polarization contribution to the muon g2g-2, via elastic muon-electron scattering. Since the current muon g2g-2 anomaly hints at the potential existence of new physics (NP) related to the muon, the question then arises as to whether the measurement of hadronic vacuum polarization in MUonE could be affected by the same NP as well. In this work, we address this question by investigating a variety of NP explanations of the muon g2g-2 anomaly via either vector or scalar mediators with either flavor-universal, non-universal or even flavor-violating couplings to electrons and muons. We derive the corresponding MUonE sensitivity in each case and find that the measurement of hadronic vacuum polarization at the MUonE is not vulnerable to any of these NP scenarios.Comment: 30 pages, 12 figures, minor corrections and changes, more references, version to appear in JHE

    Polarization Switching Dynamics Governed by Thermodynamic Nucleation Process in Ultrathin Ferroelectric Films

    Full text link
    A long standing problem of domain switching process - how domains nucleate - is examined in ultrathin ferroelectric films. We demonstrate that the large depolarization fields in ultrathin films could significantly lower the nucleation energy barrier (U*) to a level comparable to thermal energy (kBT), resulting in power-law like polarization decay behaviors. The "Landauer's paradox": U* is thermally insurmountable is not a critical issue in the polarization switching of ultrathin ferroelectric films. We empirically find a universal relation between the polarization decay behavior and U*/kBT.Comment: 5 pages, 4 figure

    Anomalous resilient to decoherence macroscopic quantum superpositions generated by universally covariant optimal quantum cloning

    Full text link
    We show that the quantum states generated by universal optimal quantum cloning of a single photon represent an universal set of quantum superpositions resilient to decoherence. We adopt Bures distance as a tool to investigate the persistence ofquantum coherence of these quantum states. According to this analysis, the process of universal cloning realizes a class of quantum superpositions that exhibits a covariance property in lossy configuration over the complete set of polarization states in the Bloch sphere.Comment: 8 pages, 6 figure

    Quantum cloning with an optical fiber amplifier

    Get PDF
    It has been shown theoretically that a light amplifier working on the physical principle of stimulated emission should achieve optimal quantum cloning of the polarization state of light. We demonstrate close-to-optimal universal quantum cloning of polarization in a standard fiber amplifier for telecom wavelengths. For cloning 1 --> 2 we find a fidelity of 0.82, the optimal value being 5/6 = 0.83.Comment: 4 pages, 3 figure
    corecore